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We developed an efficient Monte Carlo Simulated Annealing ( MCSA) program for modeling
protein loops with high speed. The total conformational energy in each step of MCSA simulation
consists of two parts: the nonbonded atomic interaction represented by a simple sofi-sphere
potential and the harmonic distance constraint to ensure the smooth connection of the loop
segment o the rest of the protein structure. The sofi-sphere potential was a simplified potential
that has been successfully used by the authors in modeling the carbohydrate part of glycoprotein
systems [H. Zhang, Y. Yang, L. Lai, and Y. Tang (1996), Carbohydrate Research, Vol 284.
pp. 25~ 34]). It only considers the purely repulsive steric interactions to avoid artificial attractive
Jorces between atoms in the absence of solvent molecules. The N-terminal of the loop segment
was connected 1o the bulk protein part, and two dummy main-chain atoms N and Ca immedi-
ately following the C-terminal of the loop segment were constrained to their real positions in the
protein structure, which not only assures the correct geometry of loop-protein connection but
also is more rigorous than the previous work. To improve the speed. two strategies, the local
region method and grid-mapping method, were devised to accelerate the computation of envi-
ronmental interaction that is responsible for the major part of the computing consumption.
The grid-mapping method can reduce computational time dramatically. Conformations with
rational steric packing and smooth connection to the rest of the protein structure were generated
by the MCSA program, and then were refined by the empirical force field CHARMm [B. R.
Brook, R. E. Braccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus (1983).
Journal of Computational Chemistry, Vol. 4, pp. 187-217]. Bovine pancreatic trypsin inhibi-
tor (BPTI1) was used as an example to test the ability of loop modeling of the method, and five
loops in BPTI were calculated. Conformations close to the crystal structure were generated for
all of them. With the criteria of CHARMm energy, near-native conformations can be selected.
for example, the backbone rms deviation 0.93 A from the crystal structure was gotten for the
longest 9-residue loop.  © 1997 John Wiley & Sons, Inc.

proteins, the surface loop regions, which in most

cases are not conserved and includes gaps and

chain reversals, need to be modeled afterward.

Protein loop modeling is important in protein
structural biology for its wide applications. For ex-
ample, during protein structure prediction, once
the core structure is determined from homologous
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Similarly, in an nmr spectroscopy experiment, due
to various reasons, sometimes we may not have
enough distance constraints to define all the struc-

CCC 0006-3525/97/010061-12
61



62 Zhang et al.

ture segments, and part of them have to be gener-
ated from other known atomic positions. Another
challenge comes from antibody engineering where
people expect to alter the nature of the combining
site of antibody and its concomitant binding and
specificity by experimental mutagenesis on the hy-
pervariable loops.! The common point in all the
above cases demands that a flexible peptide chain
be anchored into a known fixed framework with a
proper orientation relative to the bulk protein en-
vironment.

Present strategies of loop search can be divided
into two main categories®*: knowledge-based ap-
proach and ab initio approach. Sometimes, the two
are mixed in one program.*

Knowledge-Based Approach

In knowledge-based approach, a conformation
found in the loop of equivalent length in the ho-
mologous protein, or if unavailable, in another
protein, is chosen to be the candidate conforma-
tion based on the criteria of anchor deviation, se-
quence homology, and steric contacts, etc.>® Al-
ternative ways generate the candidate conforma-
tions not directly from the protein structure data
base, but from the special regulation extracted
from the structure data base. The approach devel-
oped by Moult et al.” involves the selection of a rep-
resentative set of ¢, ¥, and x values for each residue
from the distributions of these angles in refined
protein structures, and generating a series of loop
fragments by various combinations of these dihe-
dral angles. Those fragments that come close to sat-
isfying the closure requirements are then refined by
energy minimization in the presence of the rest of
the protein structure. Recently, Sudarsanam et al.?
created from the Protein Data Bank (PDB) a data
base of a list of allowed ¢,,, and ¥, angles with
which they can construct the protein loops. A spe-
cial method for modeling complementary deter-
mining regions (CDRs) of antibody, the Key resi-
due method,? showed that there is a small reper-
toire of main-chain conformations for at least five
of the six hypervariable regions of antibodies, and
that the particular conformation adopted is deter-
mined by a few key conserved residues. Reczko et
al.'"” used an artificial neural network trained on a
large set of loops from the PDB to predict the most
variable antibody hypervariable loop, CDR-H3,
with a reasonable success.

Powerful as the knowledge-based method is, it
cannot provide reliable results when lacking ho-
mologous fragment or the key residues. Moreover,

some of the methods are specific for a narrow range
of loops, e.g., those of antibodies, and are hard to
be applied in generic situations.

Ab Initio Approach

In the ab initio approach, a structure data base is
not necessary. Candidate conformations can be
created from special algorithms, including Go-
Scheraga,''"'> TWEAK,'® bond scaling,'”'® and
Monte Carlo.'”"** Go and Scheraga proposed a
method for exactly closed rings in molecules with
fixed bond lengths and bond angles.'' Loops in
proteins are special cases of rings in which the two
ends of a loop do not coincide. In a ring with »
rotatable bonds, there are only n — 6 independent
ones. The values of the six dependent variables are
determined by the conditions of ring closure. Bruc-
coleri and Karplus'*'* modified the Go-Scheraga
method by allowing bond-angle bending when the
equations did not have a solution. In treating loops
longer than three residues, they carried out
searches over additional dihedral angles. Their
flexible-geometry method has been incorporated
into the program CONGEN, '* which was designed
to execute loop searches in homology-modeling
applications. Dudek and Scheraga' and Palmer
and Scheraga'* developed alternative formulations
of the equations, involving efficient representation
of hydration free energy, a local minimization pro-
cedure with respect to subsets of degrees of free-
dom, and taking into account differences in the
backbone geometry of various amino acids. With
these methods, they improved computational
efficiency, and demonstrated that bond-angle
bending is not necessary for chain segments five
residues or longer in length. Another approach to
loop searches, the TWEAK method developed by
Shenkin et al., '® is carried out by setting each dihe-
dral angle on the main chain of the variable frag-
ment to a random value, then using an iterated lin-
earized Lagrange multiplier technique to enforce
the geometric constraints with minimal conforma-
tional perturbation. The random tweak method
can avoid the exponential increase in computing
time with loop size, which is inherent in systematic
searches.

Generally, the above ab initio methods,''-'® in
the first step, generate backbone conformations
subject to the imposed distance constraints, fol-
lowed by a step of screening or minimization to re-
move those having bad steric contacts and high po-
tential energy within the loop segment or between
the loop segment and the environment; then comes



the last step of side-chain generation. Their weak-
nesses are as follows: they have difficulty covering
the large conformational space of middle size and
long loops (>5). they have a low acceptation ratio
in the second step of screening as to reject most of
the conformations generated time-consumingly in
the first step, and have to model side chains sepa-
rately that may introduce extra errors to the mod-
eling.

Improved methods consider both the con-
strained effects of loop terminals and the interac-
tion of the loop with protein environment simulta-
neously. with side chains generated along with the
backbone in the process of simulation. Therefore,
the calculations could be accelerated from the out-
set of the conformational search procedure. The
bond-scaling relaxation method '"'® used by Zheng
et al. randomly generated a number of conforma-
tions and subsequently scaled them to meet the dis-
tance constraints. The random configuration is
minimized in the presence of bulk protein environ-
ment with the equilibrium bond lengths gradually
restored during the minimization. The procedure
is efficient in calculation. Monte Carlo “impor-
tance sampling™ has been widely used in the com-
putational procedure for determining the mini-
mum energy conformation of protein molecules,
which has been widely assumed to require an expo-
nential amount of time with respect to the protein
size, i.e., a NP-hard problem.”® Carlacci and
Englander'” used a Monte Carlo algorithm to gen-
erate conformations for local segments in bovine
pancreatic trypsine inhibitor (BPTI). In their ap-
proach, the computed loop segment started from
a random conformation and was allowed to move
while the rest of the protein remained fixed.
Dummy residues identical in type and conforma-
tion with the residues on the fixed part of the pro-
tein immediately adjacent to the first and last resi-
dues of the segment were added to the ends of the
segment. The total energy of the sampled confor-
mations is the conformational energy of the loop
segment in a local region plus a polypeptide chain
continuity constraint represented by a harmonic
overlapping energy of the dummy residues with the
matching residues in the protein. The best confor-
mation was chosen on the basis of the lowest total
energy and was refined further. The Monte Carlo
simulations of Higo and co-workers?*** started
from an extended conformation of the loop with
one terminal connected to the fixed bulk protein,
then closed the loop by applying an harmonic po-
tential to the four backbone atoms of the last resi-
due of the loop to match the relative positions in
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experimental structure. Another important energy
optimizing protocol, molecular dynamics, was also
used in searching the conformational space of the
protein loop2*~" or cyclic peptide,?® whose ability
to reconstruct protein loops, however, still needs to
be explored.

Monte Carlo method has been developed to be
a mature and general algorithm in combinatorial
optimization problems. There is a large variety of
versions present for us to select. Another advantage
of the Monte Carlo method is that it can efficiently
search the conformational space and can almost al-
ways find low energy conformations (although
probably not the lowest energy conformation),
while the bond-scaling relaxation method some-
times cannot overcome local energy barriers dur-
ing the minimization and fail to relax.'® The Monte
Carlo method can also easily be extended from sin-
gle loop modeling to multiple loops modeling, as
illustrated in the work of Higo and co-workers."*!
What they did was to add an extra term in the en-
ergy function representing interactions between
multiple loops, then near-native conformations
could be generated and selected by energy criteria.
With the bond-scaling relaxation method, Rosen-
bach and Rosenfeld >’ used a simultancous closure
procedure to model two loops in a protein together.
They first calculated a small number of putative
starting conformations for the first loop, followed
by simultaneous closure of each of these with 100
random starting conformations for the second
loop. It was demonstrated that conformations close
to the crystal structure could be generated for both
loops. but there was no proper criteria to choose
them, so it remains a problem as to whether this
method could be extended to the case of more than
two loops.

The main drawback of the Monte Carlo method
in modeling protein loops and other macromole-
cule systems is its low efficiency. Most work
adopted various improved versions of Monte Carlo
algorithm to do the simulation of protein loop,
such as the simulated annealing method used by
Carlacci and Englander, !° which has drawn much
attention in the field of global optimization and
was used, for example, to solve the traveling sales-
man problem>’—one of the best-known NP-com-
plete problems. Simulated annealing relies on a
Monte Carlo procedure but, instead of being car-
ried out at constant temperature, the simulation
starts from a high temperature at which the system
can overcome energy barriers and explore the con-
figuration space widely. The temperature is slowly
decreased, then it becomes increasingly difficult to
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cross energy barriers. Finally, it is hoped that the
system is trapped in its ground state. This method
takes its name from analogy with the metallurgical
process of annealing. If a crystal solid is melted and
then cooled too quickly (quenched), usually a dis-
ordered structure trapped in a local minimum re-
sults. If the system is annealed, i.e., brought to
higher temperature and then slowly cooled, the
crystalline ground state can be obtained. Higo and
co-workers?-?*> developed an extended simulated
annealing process by combining simulated anneal-
ing with the scaled collective variables method of
Noguti and Go,?' which can model the protein
loops with a higher efficiency. Given the knowledge
of the energy or statistical properties of conforma-
tional subspaces (e.g., -y zones or side-chain tor-
sion angles), the biased probability Monte Carlo
(BPMC) procedure designed by Borchert and co-
workers?**? randomly selects the subspace, then
takes a step to a new random position independent
of the previous position, but according to the pre-
defined continuous probability distribution. The
random step is followed by a local minimization in
torsion angle space. The BPMC runs displayed a
much better convergence properties than the non-
biased simulations. Another method used by Vas-
matzis et al.* can generate small, eight-backbone
atom, local moves in Cartesian coordinates within
geometric constraints, and then are efficient to be
used in adaptable Monte Carlo procedures.
Although different algorithms were tested, the
limit of computer power remains the main prohib-
itive factor for the Monte Carlo method to model
long loops or multiple loops, because large confor-
mational space need to be explored. In some cases,
for example, when modeling CDRSs in antibodies,
it is better to consider six loops simultaneously if a
more precise and reasonable result is expected.
Most of the present Monte Carlo methods became
time-consuming even when treating middle-sized
loops (around 7 residues) on supercomputers'’
and parallel computers,?*>* let alone longer ones.
Therefore, algorithms with higher speed and effi-
ciency will be helpful and necessary for treating
long loops and multiple loops. As is well known,
generally the limiting factor in a Monte Carlo cal-
culation is the evaluation of potential energy. In
loop modeling, people have to calculate both the
intraaction within the loop segment and the in-
teraction between the loop segment and the bulk
protein environment in computationally accept-
able time. Therefore, the key point in our approach
is to introduce a potential in Monte Carlo algo-
rithm, which should be effective enough in gener-

ating ‘‘correct” conformations on the one hand,
and be simple in form suitable for fast computing
on the other. In the following sections, we will de-
scribe how a simplified soft-sphere potential com-
bined with a grid-mapping method has been suc-
cessfully used to satisfy the dual purposes.

After generating a number of candidate confor-
mations, the next problem is how to select near-
native conformations from other putative confor-
mations. The empirical energy is the criteria most
often adopted, but generally it was considered dis-
satisfying. In this work, we also want to test if the
empirical energy can work successfully in our
method.

METHODS

Energy Function

In our MCSA simulation, the total conformational en-
ergy consists of two parts: the nonbonded atomic interac-
tion represented by the soft-sphere potential and the har-
monic distance constraint to ensure the smooth connec-
tion of the loop segment to the rest of the protein
structure.

Soft-Sphere Potential. Both experimental and theo-
retic work show that proper steric packing is the necessity
of correct protein fold. Early calculations employing
only the hard-sphere potential in which there is no at-
tractive term and only an infinite repulsion when two
atoms approach each other within a distance less than or
equal to the sum of their van der Waals radii have been
able to provide very useful, although approximate, in-
sights into the structure of the oligopeptide chain.! Here
we designed a so-called soft-sphere potential, as shown in
Eq. (1), to calculate the nonbonded interaction between
the nonbonded atomic pairs, which only evaluates the
steric interaction by considering the van der Waals vol-
ume of atoms. We have successfully used the same po-
tential in modeling the carbohydrate part of glycopro-
teins under the full bulk protein environment.>

{ks(dé -d*, dy>d
E, = (1)

0, d0<d

where E, d, dy, and k, represent, respectively, the soft-
sphere interaction energy between two atoms, the dis-
tance between them, the standard van der Waals distance
between them that is equal to the sum of the standard
van der Waals radii of atoms, 3’ and the force constant
that could be properly set by users. There is no special
amendment considered to compensate the lack of hy-
drogen atoms in the simulation. The interactions for se-
quential atoms, i.e., -2 and 1-3 interactions, were omit-
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FIGURE 1 Schematic drawing, comparing the hard-
sphere and soft-sphere potentials. The potential energy
U is plotted as a function of the interatomic distance.

ted, and there is no difference in treating the interactions
between -4 and 1-5 or the longer ones. This type of
potential will neglect the interaction between atoms
when their van der Waals volumes do not overlap. Clash
is allowed. but the closer the atomic pair is. the more
repulsive the interaction. It is displayed in Figure | that
in contrast to the hard-sphere model with absolute exclu-
sion. the soft-sphere model is “*soft” and therefore can
easily be used by the conformational searching methods,
such as Monte Carlo and molecular dynamics, to scan a
large conformational space.

This potential omitted the attractive term and static
electric term to avoid artificial attractive forces between
the atoms that could. in the absence of solvent mole-
cules, lead to a biasing of conformations toward those
that have internal van der Waals type attractions, i.e.,
conformations that show artificially high internal in-
teractions.” The simple soft-sphere potential could be
compuied much taster than the complex 6-12 Lennard-
Jones potential function, which is most often used in em-
pirical force fields to represent the van der Waals interac-
tion between nonbonded atomic pairs.

Terminal Constraint. Apart from the nonbonded
soft-sphere interaction. a harmonic distance constraint
was used to ensure the smooth connection of the flexible
loop segment to the rest of the protein structure fixed in
their known structure during the simulation. The impor-
tance of anchorage in determining a strained protein
loop conformation has been demonstrated by the exper-
imental work of Hodel et al.** In the modeling work
of Higo and his co-workers.?"" they first moved the
N-terminal residue of the peptide segment to their ref-
erence position in the x-ray structure by appropriate
translations and rotations, then constrained the main-
chain atoms of the last residue of the segment to the same
atoms in the x-ray structure. This measure is thought to
be not very strict. as one cannot be sure that the terminal
residues of any loop segment will be in the same position
as the crystal structure before starting the modeling. Ac-
tually, their simulation of., for example, a 7-residue loop,
only corresponds to the simulation of a S-residue loop
in other articles. Thus, the prediction accuracy in their
papers may be overestimated when compared with other
works. Carlacci and Englander'” added two dummy res-
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idues to the two ends of the loop segment identical in
type and conformation with the residues in the fixed part
of the protein immediately adjacent to the first and last
residues of the segment, then constrained them to their
real positions in x-ray structure. This method was first
proposed by Chou et al.*” Although it is more reasonable
than what Higo et al. did, we note that a neglect remains.
Assuming a dummy residue with known conformation
to the crystal structure was added to the C-terminal of
the loop segment illustrated in Figure 2, one has to assign
a definite ¢ angle for the residue; otherwise, there will be
infinite number of possible connected conformations for
the dummy residue, as shown in Figure 2. But if one sets
the angle according to its value in the crystal structure,
one takes for granted that the position of the carbonyl
carbon atom of the last residue of the loop segment is
already known, which is the only way the ¢ angle could
be determined. This is not strict because we should en-
sure that we have no prior knowledge of the detailed po-
sitions of loop atoms at the beginning of an ab initio pro-
cedure. Alternatively, one can add a rotation freedom to
the algorithm letting the ¢ angle in Figure 2 variable in
the simulation, but an extra computational effort will be
brought in.

From Figure 2. we can see that the key to ensure the
smooth connection of two residues is to keep the atoms
N and Ca of one residue in the same trans peptide plane
with the atoms Ca, C. and O of its preceding residue, i.e.,
the w angle should be 180° or 0°. From this geometric
relation, the coordinates of the N and Ca atoms of a res-
idue can be calculated from its preceding one given the
parameters of the standard bond length and bond an-
gle.* Based on this, we presented a more strict procedure
to anchor the loop segment to its neighbor residues. First,
two dummy atoms N and Ca were generated following
the fixed part residue that is right adjacent to the N-ter-
minal of the loop segment. Next, a stretched peptide was
generated by CHARMmMm as the loop segment. Then, the
peptide was translated and rotated to have the two atoms
N and Cea of its N-terminal residue overlap with the
dummy atoms, i.e.. to be anchored to the fixed part of
protein. Finally, another two dummy atoms N and C«
were generated to connect to the last residue of the loop
peptide 1o work as a constrained target in the Monte
Carlo simulation. The constrained energy was repre-
sented by a harmonic overlapping function of the latter
two dummy atoms from their reference positions in the
crystal structure:

E. =k AIr(N) = 1o(N))? + [F(CA) — ro(CA)]?} (2)

where r(X) and ryo(X) are the position vectors of a
dummy atom X and its reference atom in the crystal
structure: k. is the force coefficient.

Total Energy. The total conformational energy was
the sum of the nonbonded soft-sphere energy and the
constrained energy for loop closure. No bonding energy



66 Zhang et al.

terms (bond-stretch, bond angle bending, torsion angle
rotating, etc.) were considered.

E=E,+E. (3)

The soft-sphere energy was calculated for all nonbonded
atomic pairs both within the flexible loop segment and
between the loop segment and the bulk protein. The two
environmental atoms N and Ca that are immediately
next to the C-terminal of the loop segment were not in-
volved in the computing of the nonbonded interaction
with the loop segment. Because the bulk protein part was
fixed during the simulation, the nonbonded interactions
within them should be constant and therefore were not
calculated.

Methods to Accelerate the Calculation of
Environmental Interactions

The number of nonbonded atomic pairs within a loop
segment is generally quite smaller than the number of
those between loop segment and its environment, so the
key factor responsible for the speed of the algorithm will
be the calculation of the environmental interaction. We
take a 5-residue loop in BPTI, as an example, which typ-
ically consists of 40 atoms. After randomly rotating a tor-
sion angle, to evaluate the energy variation we need to
recalculate less than 40 nonbonded interactions within
the loop segment for each rotated loop atom. Compara-
tively, the calculation of the environmental interaction
are rather time-consuming, as there are 412 atoms out of
the totally 454 atoms in BPTI taken as the environmen-
tal atoms for the 5-residue loop (412 = 454-40-2, two
atoms N and Ca immediately next to the C-terminal of
the loop were not involved in the computing), i.e., 412
nonbonded environmental interactions need to be recal-
culated for each rotated atom if no proper accelerating
method is introduced.

Local Region Method. Distance cutoff was often used
in the empirical force field calculations to lighten the
computing burdens, as in the work of Higo et al.2%-** Car-
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FIGURE 2 The method of adding dummy residue
and dummy atoms. Inside of the square box is the loop
segment (as an example, only one residue was dem-
onstrated ); the dashed line conformation represents an
alternative conformation possibly adopted by the
dummy residue with a different ¢ angle.

lacci et al. used an ellipsoid to define a local region; the
residues of the bulk protein enclosed in the ellipsoid were
involved in the computing of nonbonded interaction.!’
At the beginning of our work, we similarly tried the local
region method by designing a special ellipsoid. Since the
clear definition of the ellipsoid was not given in Carlacci
et al.’s work, ' here we strictly devise the ellipsoid in Fig-
ure 3. First, a referential ellipsoid was constructed, whose
two focuses are just the two anchor atoms immediately
adjacent to the two terminals of loop segment, i.e., the
carbonyl carbon atom C adjacent to the N-terminal and
the nitrogen atom N- to the C-terminal. The sum of the
distances of any point on the ellipsoid surface to the two
focuses should be a constant, and here it is set to the
main-chain length of the stretched loop segment. There-
fore, the ellipsoidal surface is approximately the outer-
most position that the main-chain atoms of the loop seg-
ment can reach. To correctly estimate the number of
environmental atoms possible that clash with the main-
chain atoms, the ellipsoidal volume should expand out-
side a specified distance D., which is the distance that
two atoms start to clash, i.e., the sum of the van der
Waals radii of two atoms. Likewise, one more expansion
of a proper value D, for the space of the loop side chain
was necessary. Then finally, a new ellipsoid was used to
approximate the local region of the environment, whose
intercepts in the three axes of the Cartesian coordinate
system each has an increment of D, + D; to the referen-
tial ellipsoid. The advantage of using an ellipsoid to de-
fine the local region is the ease of judging whether a pro-
tein atom falls into the local region: if the distance sum
of this atom to the two focuses of the ellipsoid is longer
than the specified distance constant for the surface point
of the ellipsoid, the atom will be undoubtedly outside of

the local region. The focuses of the new ellipsoid are Fc-
and F} shown in Figure 3. In the simulation, we only

need calculate the interaction inside of the ellipsoid local
region to evaluate the influence of the environment.

Grid-Mapping Method. 1n order to further increase
the computing speed, we developed a grid-mapping
method to accelerate the calculation of the environmen-
tal interactions. First, we generated a cuboid that could
exactly include the van der Waals volume of the whole
fixed protein part. The cuboid was divided into a large
number of small cubes with a grid size D,, an example of
which was shown in the center of Figure 3 drawn in
heavy lines. Randomly putting an atom inside of the
cube, we can see that any other atoms that possibly clash
with this atom should locate at least within the outside
polyhedron. The figure only shows the upright part of the
polyhedron facing the reader for an easy view; the rest
can be deduced based on symmetry. In our program, we
recorded the bulk protein atoms that possibly clash with
every cube in a special array, i.e., the bulk protein atoms
were mapped onto every cube. To evaluate the interac-
tion of a flexible loop atom with the bulk protein envi-
ronment, we only need to determine, first of all, which
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FIGURE 3 Methods to accelerate the calculation of
the environmental interaction. (a) Local region method
and (b) grid-mapping method. D, D,, and D, are double

of van der Waals radii of sulfur atom, side-chain length,
and grid size. F¢. Fy and Fy,, F\ are the focuses of the

referential ellipsoid and the local region ellipsoid. respec-
tively.

cube it locates in, then calculate the energy of this atom
to all the environmental atoms mapped onto this cube.

The grid-mapping method can determine all the pos-
sible nonbonded atoms around a loop atom definitely,
without the defect of the local region method of ignoring
some of the possible environmental atoms. The grid size
can be scaled to decrease the polyhedron volume, and
consequently to reduce the number of environment
atoms wherein. The volume of the polyhedron in Figure
3 can be represented as

V,=D}+6D2D + 3xDD, +3xD} (4)

The grid size. on the other hand, cannot be too small.
Otherwise, too many grids will cause the computer mem-
ory overflow. Thus, a trade-off needs to be made based
on the local hardware situation. In our simulation, it was
set 10 1 A; then the volume is 340 A* for BPTI, which at
most can hold about 24 atoms for the atomic density of
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protein BPTI, estimated to be 14-18 A® per atom by
means of dividing the total atom number of BPTI (454)
into its whole volume. Consequently, the number of en-
vironmental atoms is about the same as the number of
atoms in a loop segment, and even less in case of long
loops. The real number of environmental atoms is actu-
ally smaller than the estimated value of 24, because the
cubes in which the loop atoms are possibly located are
around or outside of the protein surface and hence do
not have many environmental atoms concomitant.
Therefore. the huge amount of computing effort for eval-
uating the environmental interaction can be reduced
dramatically.

MCSA Algorithm

In a MCSA run, all the protein atoms except the loop
atoms were kept fixed in the same coordinates as in the
crystal structure. The method to generate initial confor-
mation of the loop segment has been described in the
previous section. All the variable torsion angles, includ-
ing main chain ¢,y angles and side-chain x angles, were
set to 180° with the exception of the ¢ angle of proline,
which was fixed at 75° during the simulation. Conforma-
tions were sampled by randomly selecting one of the
variable torsion angles and assigning a new value be-
tween —180° and +180°. Main-chain w angles were kept
to be 180° during the simulation. The total energy of the
new conformation, which consists of the nonbonded
soft-sphere energy and the terminal constrained energy.
was evaluated in each step and compared to the prior
one; then the new conformation was either accepted or
rejected based on the Metropolis criteria.>® A cycle was
compileted after a specified number of conformations are
searched. The number was set to 100 times the number
of variable torsion angles. The accepting rate of each cy-
cle was equal to the number of accepted conformation
divided by the total conformational search number. The
simulation starts from a high temperature where a high
accepting rate (80% in our work) can be achieved. and
the temperature was lowered at the end of each cycle by
multiplying a scale factor of 0.83. When the temperature
dropped to a value near zero, or when the simulation run
a specified number of cycles, the simulation was termi-
nated. The uniform random number generator GGL*'
based on a linear congruential method was adopted in
our MCSA. The whole algorithm was implemented in
C++ code.

Simulation Procedures

The protein structure of BPTI (PDB code 4PTI) from
the PDB was chosen as an example in the simulation,
which is also the most frequently used protein structure
in testing loop modeling methods. The same segments as
calculated by Carlacci and Englander ' were used here,
i.e., loops of LP1(12-16). LP2(11~-17) and LP3(10-
18) and a-helix of LP4(46-50), B-strand of LP5(16-
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20), the numbers in parentheses indicating residue se-
quential numbers. In order to remove bad contacts and
to compare the calculated result with the crystal struc-
ture, first the crystal structure of 4PTI was optimized
with 200 steps of steepest descents (SD), 200 steps of
conjugate gradient (CONJ), and 800 steps of Adopted
Basis Newton-Raphson (ABNR) method successively

using CHARMm (QUANTA 4.0)*' with polar hy-
drogens. Since it is hard to give a precise dielectric con-
stant for the surface part of proteins, we set it to the value
in vacuum, i.e., one unit, for simplicity. The energy co-
efficients in the soft-sphere potential and the constrained
potential are 10 and 100 kcal/(mole atom A’), respec-
tively. The computer we used was SGI Indy / R4400 with
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FIGURE 4 CHARMM energy vs RMSD from crystal structure for the conformations gen-
erated by the local region method. There is one data point out of the figure range in LP1 and
LP3 respectively because of its high energy and therefore is not shown here.
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Table 1 RMSDs from Crystal Structure of the Predicted Conformations for the Five Loops in BPTI (A)
Backbone® All atoms

Lowest Energy Lowest RMSD Lowest Energy Lowest RMSD

Conformation Conformation Conformation Conformation
Loop
Segment LY G* LP G* LP G* L® G*
LP1(12-16) 0.15 0.06 0.06 0.04 0.53 0.34 0.25 0.34
LP2(11-17) 0.84 0.84 0.45 0.70 1.90 1.90 1.78 1.78
LP3(10-18) 0.93 093 0.93 093 2.34 2.34 2.34 2.34
LP4 (46-50) 0.80 0.88 0.14 0.06 2.62 1.96 1.45 .54
LP5(16-20) 0.73 0.26 0.15 0.12 1.23 1.95 1.15 1.02

*Including main chain atom N, Ca, C.and O.
" Result of the local region method.
“ Result of the grid-mapping method.

174 MHZ 1P22 processor, 48 megabytes main memory
and operating system of IRIXS5.3.

With each accelerating method (local region and grid
mapping). 100 candidate conformations were generated
by the MCSA program for every loop. Those conforma-
tions were then optimized with 400 steps of the SD. CONJ,
and ABNR method successively using CHARMm. During
the minimization. all protein atoms except the loop atoms
are kept fixed in their crystal position: therefore, the
CHARMM energy consists of the energy inside of the loop
segment and the energy between the loop segment and its
environment.

RESULTS

What we are mostly concerned are, first of all,
whether we can get near-native conformations and

FIGURE 5 The structure of the longest 9-residue loop
LP3. Light line is the simulated conformation with
RMSD of 0.93 A and the heavy line is the crystal struc-
ture.

select them with a proper criteria; second, whether
we can obtain the results with high speed and effi-
ciency.

Modeling Precision

We calculated the rms deviations (RMSDs) of the
100 generated conformations from the crystal
structure for every loop and correlated them with
their CHARMm energies. The result of the local
region method is displayed in Figure 4. It can be
seen that there is a large number of conformations
reaching a high precision to the crystal structures,
for example, the RMSDs from the crystal structure
of many of them are even below 0.1 A for 5-residue
loops. It was shown in Table I that all the lowest
energy and lowest RMSD conformations have
RMSD:s from the crystal structure below 1 A, and
those generated by the grid-mapping method are
slightly better than those by the local region
method in most cases.

Although it was thought that the empirical en-
ergy was not a very good criteria in judging the cor-
rectness of loop folding and some improved free
energy functions have been suggested, *> we still use
it in our work with a moderate success (shown in
Figure 4 and Table I); worthy of mention is the
correct selection of the lowest backbone RMSD
conformation of 0.93 A for the longest 9-residue
loop LP3. The simulated conformation and the
crystal structure of LP3 are displayed in Figure 5.

Speed of the Program

In the local region method, the volume of the ellip-
soid depends on two variables: D, and D,. In the



70 Zhang et al.

Table II The Number of Atoms in Local Regions (when D, and D, in Figure 3 are 3.6 and 3 A, respectively)

Segment LP1 LP2 LP3 LP4 LP5
Loop 31 49 69 37 43
Environment 208 343 377 336 191

simulation, D, was set to be double the van der
Waals radius of sulfur atom, i.e., 3.6 A, and the
side-chain expanding D, was set to a tentative value
3 A, which is only proper for short and middle-
length side chains. The numbers of the environ-
mental atoms within the local region for the five-
loop segments range from 191 to 377 (shown in
Table II), which are similar to those in Ref. 19. The
data suggest that the method can only save a lim-
ited amount of computing time, i.e., about half of
a plain method or less, because totally we have
around 400 bulk protein atoms. In case of the lon-
gest 9-residue loop, almost all of them were in-
cluded; thus very limited computational time
could be saved with the local region method. We
can reduce the number of the environmental
atoms by decreasing the value of D, to contract the
size of the ellipsoid; but actually, even the original
value of 3 A is not big enough for most residues
with long or even middle side chains. Therefore,
the local region method worked not so successfully
as we hoped.

The grid-mapping method, however, worked
very successfully, as demonstrated by the dramatic
reduction of the program running time shown in
Table I11. Actually, the grid-mapping method cost
less than one-tenth time as much as the local region
method.

The step of optimization with CHARMm costs
around 1-2 min for each conformation, which can
generally decrease 1-2 A of the RMSD value.

DISCUSSION

The MCSA method based on the soft-sphere po-
tential was demonstrated to be quite efficient in

loop modeling, which suggests that the steric con-
straint and the geometric constraint are the most
important factors for the correct orientation of pro-
tein loops. More explicit potential could be used at
the final step as the tool of refinement.

Comparing the results here to the previous ref-
erence, we found that all the lowest energy RMSDs
are better than those in Ref. 19, and some of them
are nearly 1 A lower than those in the reference.
But this comparison is not stringent enough be-
cause of the different regulation strategy of the ini-
tial crystal structure in the two studies.

The local region method based on the com-
monly used distance cutoff technique was not very
successful in accelerating the computation of envi-
ronmental interactions, while the grid-mapping
method could dramatically reduce the time. In the
grid-mapping method, although the grid size could
be reduced even smaller than its present value of 1
A if a computer with a larger memory were avail-
able, no obvious increasing of the computational
speed might be expected, because the time for cal-
culating the interactions within the loop segment
already is comparable to the time for calculating
the environmental interactions when the grid size
was 1 A, ie., the key to influence the computa-
tional time is no longer only the interactions from
the environment.

Starting from the same set of random numbers,
in most cases with two accelerating methods we got
the same resultant conformations, especially in
long loops, as seen in Table IV. There are two ex-
treme cases in the table: LP3 and LP5. In the for-
mer, almost all resultant conformations are the
same in two methods (96%), while none is the
same in the latter. This can be explained by the size

Table III Typical Running Time of a Single MCSA Procedure

Running Time (min)

Loop Segment Residue/Torsion Angle Number Local Region Method Grid-Mapping Method
LPI 5/14 18 1-2
LP2 7/24 93 5
LP3 9/32 150 12




Modeling Protein Loops 71

Table IV Comparison of the RMSDs from Crystal Structure of the 100 Conformations Generated by the Two
Accelerating Methods Based on the Same Series of Random Seeds

RMSD Comparison LP1 LP2 LP3 LP4 LP5
=7 44 96 70 0
>h 30 1 17 51

< 26 3 13 49

* The number of conformations having the same RMSDs in two methods.
® The number of conformations having the larger RMSDs in the local region method than in the grid-mapping method.
¢ The number of conformations having the smaller RMSDs in the local region method than in the grid-mapping method.

of the local regions. It was shown in Table 11 that
the local region of LP3 is so large that almost all the
bulk protein atoms were included. Therefore, the
resultant conformations calculated by the local re-
gion method are mostly the same as those by the
grid-mapping method. In case of LPS, the number
of the environmental atoms in the local region is
quite low, making the energy hypersurface in the
local region method obviously different from the
real one in the grid-mapping method. In most
loops. the conformations generated by the local re-
gion method have larger RMSDs more often than
those by the grid-mapping method, as shown in Ta-
ble IV. An exception is LP3, for which we gener-
ated two more near-native conformations by the
local region method than by the grid-mapping
method. But so few data points (4) cannot assure
a statistical conclusion. Then, generally, the grid-
mapping method can have a higher accuracy than
the local region method. because it determines the
environment of loop atoms, definitely avoiding the

y=10"4(5.56x%- 103x+1350x)

Running time (minutes)

0 T T T
0 10 20 30 40

Torsion angle number

FIGURE 6 The correlation between the running time
and the number of the variable torsion angles of the
MCSA program with grid-mapping method.

necessary approximation adopted in the local re-
gion method.

Similar to the previous work, the empirical en-
ergy function cannot always successfully select the
lowest RMSD conformation. But in our work, the
lowest energy conformations are very close to the
lowest RMSD conformations in all cases, which
proved that, as a quite useful tool, the empirical
energy function still can be effectively used in judg-
ing the correctness of the fold of local segments.

Finally, we can see from Figure 6 that the rela-
tion between the computational time of the MCSA
program with the grid-mapping method and the
number of torsion angles can be approximately fit-
ted by a cubic curve, while in the systematic algo-
rithm the relation is the function of ¢”, where n
is the system size. Therefore, the advantage of the
Monte Carlo method in solving the combinatorial
problems makes possible the use of modeling of
even longer loops or multiple loops in the near fu-
ture. Furthermore, more fast and efficient compu-
tations could be achieved if more advanced ver-
sions of MCSA algorithms in Refs. 20 and 23 were
adopted.

The authors thank the Chinese State Commission of Sci-
ence and Technology. State Education Commission. and
the Nature Science Foundation for financial support. We
also thank Professor Kankaala of Tampere University of
Technology of Finland for providing the random num-
ber generator code.

Note. We have uploaded the source code of our program
in the anonymous FTP server of Institute of Physical
Chemistry (1PC) of Peking University to make our method
easily to be reproduced by others. The server address is:
ftp.ipc.pku.edu.cn.. with path: /pub/upload/Ipsa/.
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