
BIOINFORMATICS Vol. 19 no. 11 2003, pages 1391–1396
DOI: 10.1093/bioinformatics/btg168

Alignment of BLAST high-scoring segment pairs
based on the longest increasing subsequence
algorithm

Hongyu Zhang ∗

Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA

Received on September 16, 2002; revised on January 2, 2003; accepted on February 14, 2003

ABSTRACT
Motivation: The popular BLAST algorithm is based on
a local similarity search strategy, so its high-scoring
segment pairs (HSPs) do not have global alignment
information. When scientists use BLAST to search for
a target protein or DNA sequence in a huge database
like the human genome map, the existence of repeated
fragments, homologues or pseudogenes in the genome
often makes the BLAST result filled with redundant HSPs.
Therefore, we need a computational strategy to alleviate
this problem.
Results: In the gene discovery group of Celera Genomics,
I developed a two-step method, i.e. a BLAST step plus
an LIS step, to align thousands of cDNA and protein
sequences into the human genome map. The LIS step
is based on a mature computational algorithm, Longest
Increasing Subsequence (LIS) algorithm. The idea is
to use the LIS algorithm to find the longest series
of consecutive HSPs in the BLAST output. Such a
BLAST+LIS strategy can be used as an independent
alignment tool or as a complementary tool for other
alignment programs like Sim4 and GenWise. It can also
work as a general purpose BLAST result processor in all
sorts of BLAST searches. Two examples from Celera were
shown in this paper.
Contact: me@hongyu.org

INTRODUCTION
Bioinformatics tools used in human genome study often
have one or both of the following functions: database
search or sequence alignment. Database search tools
like BLAST (Altschul et al., 1990, 1997) and FASTA
(Pearson and Lipman, 1988) are used to search from a
sequence database for the possible close relatives of a
query sequence, while alignment tools like CLUSTALW
(Higgins et al., 1994), Sim4 (Florea et al., 1998), and
geneWise (Birney and Durbin, 1997) are used to find

∗Present address: Ceres Inc., 3007 Malibu Canyon Road, Malibu, CA 90265,
USA.

the best alignment between two sequences or multiple
sequences.

There are already quite a number of programs designed
to align a protein or transcript sequence to a genomic
sequence. Sim4 (Florea et al., 1998), Est2gen (Birney
and Durbin, 1997), est genome (Mott, 1997) and Spidey
(Wheelen et al., 2001) were programmed to align an
mRNA sequence to a genomic sequence, and programs
like geneWise and estWise (Birney and Durbin 2000)
can be used to align a protein sequence with a genomic
sequence. These programs are prohibited by their speed
to be used as database search tools in the human genome
study. More efficient programs like BLAST have to
be used to search against the whole human genome
component database. BLAST can run a search of a typical
length cDNA sequence against the whole human genome
map within tens of seconds using modern computers.
Some other programs like SSAHA (Ning et al., 2001)
and BLAT (Kent, 2002) were published recently, and
they can search the human genome database in a faster
speed than BLAST because they use a different indexing
strategy from BLAST and a longer word size than
the standard BLAST program, which is a strategy also
adopted by Mega-BLAST (Zhang et al., 2000). Compared
to them, BLAST still keeps its advantage in sensitivity and
flexibility.

The BLAST program also has an obvious deficiency.
Since it is in principle a local similarity search program,
its output often contains many redundant HSPs. Usually
it is because of the existence of homologues, pseudogenes
or some repeated fragments in the genome. In a simple
situation illustrated in Figure 1, we have to visually scan
the BLAST output file to find the correct consecutive
HSP list. The redundancy can cause two problems for
scientists. First, in lots of situations, it is not always easy
to find the correct longest consecutive list of HSPs if there
are many HSPs in the results, and the task can become
overwhelming for human eyes if there are many protein
or cDNA sequences to be processed. Second, if there are
multiple genomic component hits with similar significant

Bioinformatics 19(11) c© Oxford University Press 2003; all rights reserved. 1391

H.Zhang

1

1' 2' 3'

2 3

Genomic sequence

Query transcript/protein

Fig. 1. A typical BLASTN result. Segment 1, 2, and 3 are
consecutive segments in the query sequence, and their matches in
the genomic sequence (1′, 2′ and 3′) are also consecutive. Although
segments 2 and 3 also have other matches in the genomic sequence,
segment (1, 2, 3) matching with (1′, 2′, 3′) consist the longest
consecutive HSP list.

scores, it is not straightforward to identify which genomic
component contains the correct gene. Therefore, we need
a computer program to help us.

In this work, I designed a two-step method that com-
bined the strength of multiple programs to implement
a tool that can be used in fast locating of a transcript
or protein sequence in the human genome map. The
central idea is to use the Longest Increasing Subsequence
(LIS) algorithm to find the longest list of consecutive,
non-overlapping HSPs in a BLAST output.

ALGORITHM
Our genome search method consists of two major steps.
The first step in our method is to perform a genome
scale BLAST search. In the second step, we use the LIS
algorithm to find the longest list of consecutive, non-
overlapping HSPs for each BLAST hit, and then do some
redundancy filtering.

In the first step, we need to choose a correct BLAST
program and appropriate program parameters. To search
with an mRNA sequence against the human genome, we
can use BLASTN or TBLASTX, and to search with a
protein sequence, we use TBLASTN. In order to remove
the fuzzy alignments that usually appear in the two edges
of HSPs, we use big gap penalties in BLAST searches.

The LIS algorithm used in the second step is orig-
inally an algorithm to find the longest monotonically
increasing subsequence in a sequence of n numbers
(Gusfield, 1997; Skiena, 1997). Consider a sequence
S = (9, 5, 2, 8, 7, 3, 1, 6, 4), the longest increasing
subsequence of S has length 3 and is either (2, 3, 4) or
(2, 3, 6). There are two major implementations of LIS
algorithm. The simpler version is a dynamic programming
technique. Its time complexity is O(n2), where n is the
number of HSPs. A more complicated but faster version
has a time complexity of O(r log(n)) (Gusfield, 1997).

LIS algorithm has been used in studying some similar
problems in previous references. When aligning the
sequences of two genomes, Delcher et al. (1999) used

Table 1. The header of the BLAST output

BLASTN 2.1.2 [Nov-13-2000]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= CRA|11000571340367 /trans_lig_id=CRA|341000000002106
/dataset=LTI_cDNA rndm_seq /def=asm|341000000002106.Contig2 /org=Homo
sapiens /date=12/27/2000 /clone_id=CRA|19600411863039
/tissue=leukocyte
 (3220 letters)

Database: /work/gdisc2/pipeline_runs/latest_release/CHGD_assembly_late
st.fasta
 54,061 sequences; 2,908,729,056 total letters

Searching..done

 Score E
Sequences producing significant alignments: (bits) Value

CRA|GA_x2HTBL3EHN0:1..2266668 /chromosome=9 /organism=Homo sapi... 2406 0.0
CRA|GA_x2KMHMRK2MR:1..11360698 /chromosome=14 /organism=Homo sa... 104 4e-19
CRA|GA_x54KRCCT8MR:1..3514905 /chromosome=13 /organism=Homo sap... 102 1e-18
CRA|GA_x54KRCC3F0N:1..5394345 /chromosome=15 /organism=Homo sap... 98 2e-17
CRA|GA_x2KMHMQRB1V:1..9064012 /chromosome=14 /organism=Homo sap... 98 2e-17
CRA|GA_x2HTBL41RAJ:1..12379226 /chromosome=18 /organism=Homo sa... 98 2e-17
CRA|GA_x54KRCCSU5M:1..6553263 /chromosome=17 /organism=Homo sap... 94 4e-16
CRA|GA_x2HTBKPMQBA:1..7485961 /chromosome=10 /organism=Homo sap... 94 4e-16
CRA|GA_x2HTBKLHUKM:1..5175465 /chromosome=1 /organism=Homo sapi... 90 6e-15
CRA|GA_x2HTBL5BKUY:1..7334859 /chromosome=12 /organism=Homo sap... 88 2e-14

this algorithm to successfully extract the longest set of
MUMs whose sequences occur in ascending order in
both Genome A and Genome B, where MUM refers to
the Maximal Unique Matches between two genomes.
Although not using the LIS algorithm, programs like Sim4
(Florea et al., 1998) or SALSA (Rognes and Seeberg,
1998) also contain a similar strategy of combining a
fragment scanning stage plus a dynamic programming
alignment stage to find candidate alignment. Compara-
tively, in our implementation, we directly use BLAST
program to find the significant fragment matches, and
then process them using the LIS algorithm.

As explained previously in Figure 1, the purpose of
using the LIS algorithm in our work is to parse the
BLAST output and find the longest list of non-overlapping
HSPs with their positions in consecutive order in both
the query and the subject sequence. Here are the details
of how we implemented the LIS algorithm in a dynamic
programming version. First, for each genomic hit we can
pick up all n HSPs that are in the forward match direction
and sort them in the increasing order based on their query
positions (we will process all the reverse complimented
HSPs separately later). The sorted HSPs are put in an array
{hsp1, hsp2, . . . , hspn}. We then define li as the LIS of the
first i HSPs (i = 1 to n), where l1 equal to {hsp1}, and
the rest LISs are derived based on a recursive relationship
shown in Equation (1). In the recursive deduction, li has
to end up with hspi . Such a constraint makes it possible
to deduce li from all previous l1 to li−1, which is well
explained in the book of Skiena (1997).{

l1 = {hsp1}
li = { max

1� j<i
l j , hspi }, i f 0 � si − e j < Cutoff. (1)

1392

Aligning BLAST high-scoring segment pairs

In Equation (1), max1� j<i l j represents the l j that has the
longest total HSP length among {l1,l2,...,li−1}, where the
total HSP length is defined to be the sum of the lengths
of all component HSPs. si is the start position of hspi
in the subject sequence, e j is the end position of l j in
the subject sequence, and Cutoff is the maximal intron
size selected approximately as 500 kb. The constraint of
0 � si − e j < Cutoff is to enforce that the distance
between any neighboring HSP pairs be greater or equal to
zero, i.e. they are connected but not overlapped (in reality
we relaxed the limit a bit to allow a maximum 10-base
overlap that often appears in BLAST results) and less than
a cutoff that is the maximal intron size of 500 kb.

After recursively finding all li , we can pick up the
longest one among them, which is the final LIS that we
were looking for, i.e.

L I S = max
1�i�n

li . (2)

In a similar way, we can find the longest list of HSPs in
the reverse complimented direction. The final choice will
be the longer one between the two. In case that there are
multiple li having an equal total HSP length, the program
will report all of them.

Another important problem faced by this method is
that in lots of search results we have more than one
genomic hit in the BLAST result, and every component
hit covers either a partial or possibly the entire region of
the query sequence. So we have to decide how to deal with
those situations based on some rules that both make sense
in biology and also are easy to implement in computer
algorithm. We called those rules as context-logic because
they are mainly based on the relationship between the
multiple genomic component hits in the context of the
coverage of the query sequence. What we used is a greedy
approach, i.e. first we look for the LISs for each genomic
component hit, so we rank all the genomic hits based on
the length of the LISs. If the LIS of first hit cover the
whole range of the query sequence, it means possibly a
complete gene was found. For the rest hits, if their LISs
only cover partial regions of the query sequence, most
probably they only code for one of the homologues or
a repeated fragment of the query sequence and we will
discard them (we are going to discuss the potential dangers
of this choice in the Discussion section). If the LIS of
another hit also covers the whole region of the query
sequence, we will keep it and consider it another possible
coding HSP list.

Another scenario of multiple genomic hits is that the
first hit only covers a partial region of the query sequence,
which means that the gene is not complete in this genomic
sequence and we need to find other genomic components
that compliment the first component in the coverage of the
query sequence. Our current method is to see whether the

Table 2. Tabular HSP output*

Hit #1: CRA|GA_x2HTBL3EHN0:1..2266668
 cDNA_start cDNA_end Component_start Component_end Identity
 1810 3012 814019 815221 1.00
 198 443 962492 962737 1.00
 1606 1810 820436 820640 1.00
 1 199 1015831 1016029 1.00
 1431 1608 824829 825006 1.00
 798 964 863297 863463 1.00
 964 1120 848724 848880 1.00
 3020 3173 813858 814011 1.00
 621 733 885420 885532 1.00
 1167 1273 838462 838568 1.00
 527 623 954014 954110 1.00
 1348 1433 827996 828081 1.00
 442 527 960798 960883 1.00
 1270 1349 830684 830763 1.00
 734 798 884462 884526 1.00
 1120 1175 839903 839958 1.00
 2741 2811 309713 309783 0.96
 2736 2783 2231644 2231691 0.98
 2740 2787 533921 533968 0.98
 2741 2787 2045402 2045448 0.98
 2736 2781 1660414 1660459 0.98
 2743 2787 169301 169345 0.98
 2743 2787 448997 449041 0.98

* Only the HSPs of the first genomic hit are displayed
here because of space reason. The whole output can be
viewed on the web at
http://hongyu.org/paper/lis example/blast1.tab.

second hit covers a region of the query sequence that is not
covered by the first hit: if so, it will be kept; otherwise, it
will be discarded. The same procedure was applied for the
third and the remaining hits, if they exist.

RESULTS
I implemented this algorithm during my work in the gene
discovery group of Celera Genomics at the end of 2000. It
was used as a part of the Celera gene discovery pipeline.
We combine this tool with other programs like Sim4
and GeneWise to annotate new cDNA clones to discover
possible new gene targets. The program had processed
thousands of cDNA and protein sequences before I left
the gene discovery group to join another group of Celera
in April of 2001.

I want to demonstrate the results of the program using
two Celera cDNA sequence examples.

Table 1 displays the original BLAST output of a Celera
cDNA sequence search against the Celera human genome
assembly, in which there are 10 significant genomic
component hits. Table 2 lists all the HSPs in the tabular
format, which obviously contains lots of redundant HSPs
in each hit. After applying the LIS program and context-
logic, the result is shown in Table 3, from which we
can see that the program not only found the longest
consecutive HSP list by using the LIS algorithm, but also
filtered out all the redundant genomic hits. The selected
genomic hit covers nearly 100% of the query sequence,
and the list of HSPs in the output gave a clear suggestion
of the exon–intron structure.

1393

H.Zhang

Table 3. LIS output

Hit #1

 Hit ID : CRA|GA_x2HTBL3EHN0:1..2266668
 Alignment direction : reverse complement
 Aligned fraction of query : 99 %
 LIS #1 :
 cDNA_start cDNA_end Component_start Component_end Identity
 1 199 1016029 1015831 1.00
 198 443 962737 962492 1.00
 442 527 960883 960798 1.00
 527 623 954110 954014 1.00
 621 733 885532 885420 1.00
 734 798 884526 884462 1.00
 798 964 863463 863297 1.00
 964 1120 848880 848724 1.00
 1120 1175 839958 839903 1.00
 1167 1273 838568 838462 1.00
 1270 1349 830763 830684 1.00
 1348 1433 828081 827996 1.00
 1431 1608 825006 824829 1.00
 1606 1810 820640 820436 1.00
 1810 3012 815221 814019 1.00
 3020 3173 814011 813858 1.00

A more interesting example is shown in Tables 4–6. The
BLAST output has seven significant genomic hits shown
in Tables 4 and 5. Our program filtered out all the genomic
hits except for two genomic hits shown in Table 6. The two
genomic components covered different parts of the query
sequence. The first component covered almost the whole
query sequence except for a part of its central region,
while the second one covered exactly the central region of
the query sequence. Very interestingly, the second hit is a
short DNA fragment with unknown chromosome number,
which means that the genome assembly team in Celera
does not have enough proof to decide which chromosome
this fragment should be put into. When we check the
sequences of the two components, we found out that there
is an N-gap region in the first component, and the second
component, because of its small size, can right fit into
the N-gap region of the first component, as illustrated in
Figure 2. Moreover, these two components also share a
same fragment of sequence of 513 bases, which is colored
in gray in Figure 2 and is located upstream to the N-gap
region of the first component and in the 5′ end of the
second component. All these evidences strongly suggest
that the second component is a missing part of the first
component in the shot-gun assembly.

DISCUSSION
The method in this paper combines the advantages of
two algorithms, BLAST and LIS. First of all, BLAST
is very powerful for its speed, sensitivity and flexibility,
so we can do almost all sorts of database search using
BLAST. Then, the LIS algorithm is very quick and
effective to pick up the most useful information from
the BLAST output. Usually BLAST search takes the
majority of the computing time, from tens of seconds to
minutes to search for a typical length mRNA sequence
against the whole human genome assembly, while the

NNNNNNNNNNNN

Query transcript

Genomic sequence 1

Genomic sequence 2

Fig. 2. One transcript is aligned with two genomic components. The
second component happens to be able to fit in the middle N-gap
region of the first big component. And the two components share a
same 513 base-long sequence colored in gray.

Table 4. The header of the BLAST output*

BLASTN 2.1.2 [Nov-13-2000]

Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer,
Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
"Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs", Nucleic Acids Res. 25:3389-3402.

Query= CRA|11000567083186 /trans_lig_id=CRA|341000000001293
/dataset=LTI_cDNA rndm_seq /def=asm|341000000001293.Contig6 /org=Homo
sapiens /date=11/18/2000 /clone_id=CRA|19600411940083
/tissue=fetal_whole_brain
 (3442 letters)

Database: /work/gdisc2/pipeline_runs/latest_release/CHGD_assembly_late
st.fasta
 479,986 sequences; 3,281,761,131 total letters

Searching...done

 Score E
Sequences producing significant alignments: (bits) Value

CRA|GA_x54KRCCNGEJ:1..2166028 /chromosome=13 /organism=Homo sap... 508 e-140
CRA|GA_x54KRE2F1CS:1..13238 /chromosome=U /organism=Homo sapien... 482 e-133
CRA|GA_x54KRCCNGAU:1..14052 /chromosome=U /organism=Homo sapien... 482 e-133
CRA|GA_x54KRDAVJLM:1..1095 /chromosome=U /organism=Homo sapiens... 126 9e-26
CRA|GA_x54KRDAVJLL:1..683 /chromosome=U /organism=Homo sapiens ... 126 9e-26
CRA|GA_x54KRDAVJLK:1..639 /chromosome=U /organism=Homo sapiens ... 126 9e-26
CRA|GA_x2HTBL2Y49L:1..2141229 /chromosome=6 /organism=Homo sapi... 126 9e-26

LIS algorithm takes multiple magnitudes less time. The
current implementation of the LIS algorithm in this paper
is a dynamic programming version written in the language
PERL. Use of the second version of LIS implementation
described in Gusfield (1997) will make it faster. And
using C/C++ or other non-interpreted language rather than
PERL will further improve the speed. However, since the
majority of time in this method is spent on BLAST, it is
not important for us at present to increase the speed of the
LIS step.

Because of the roughness of the BLAST algorithm in the
treatment of the exon–intron boundaries, the output could
miss one or more exons in the genomic sequence even
when the genomic sequence does contain the complete
gene. In the real applications, we usually use Sim4 or
GeneWise to make a further refinement of the alignment.
Because we run the Sim4 or GeneWise on the specific
genomic chunk that was located by the LIS algorithm, they
can run very fast. We also add a default 2000 bases in both

1394

Aligning BLAST high-scoring segment pairs

Table 5. Tabular HSP output

Hit #1: CRA|GA_x54KRCCNGEJ:1..2166028
 cDNA_start cDNA_end Component_start Component_end Identities
 1312 1565 1274276 1274529 1.00
 3205 3408 1223798 1224001 1.00
 127 321 1456409 1456603 1.00
 1561 1752 1260219 1260410 1.00
 1006 1169 1279634 1279797 1.00
 2780 2946 1231404 1231571 0.99
 3051 3208 1225416 1225573 1.00
 762 910 1283939 1284087 1.00
 1842 1977 1257709 1257844 1.00
 2292 2425 1236533 1236666 1.00
 1 127 1527239 1527366 0.99
 2663 2779 1232006 1232122 1.00
 647 761 1284910 1285024 1.00
 2945 3055 1226029 1226139 1.00
 322 428 1325988 1326094 1.00
 547 646 1291836 1291935 1.00
 908 1005 1281276 1281373 1.00
 1751 1842 1258921 1259012 1.00
 2493 2583 1233045 1233135 1.00
 2583 2666 1232198 1232281 1.00
 470 550 1301561 1301641 1.00
 1237 1314 1276035 1276112 1.00
 1165 1239 1278873 1278947 1.00
 2424 2493 1233369 1233438 1.00
 426 470 1304332 1304376 1.00

Hit #2: CRA|GA_x54KRE2F1CS:1..13238
 cDNA_start cDNA_end Component_start Component_end Identities
 2053 2293 11455 11695 1.00
 1976 2055 4986 5065 1.00

Hit #3: CRA|GA_x54KRCCNGAU:1..14052
 cDNA_start cDNA_end Component_start Component_end Identities
 2053 2293 12269 12509 1.00
 1976 2055 5800 5879 1.00

Hit #4: CRA|GA_x54KRDAVJLM:1..1095
 cDNA_start cDNA_end Component_start Component_end Identities
 2424 2493 77 146 0.99

Hit #5: CRA|GA_x54KRDAVJLL:1..683
 cDNA_start cDNA_end Component_start Component_end Identities
 2424 2493 175 244 0.99

Hit #6: CRA|GA_x54KRDAVJLK:1..639
 cDNA_start cDNA_end Component_start Component_end Identities
 2424 2493 84 153 0.99

Hit #7: CRA|GA_x2HTBL2Y49L:1..2141229
 cDNA_start cDNA_end Component_start Component_end Identities
 2424 2493 1729794 1729863 0.99

the upstream and the downstream direction in the genomic
sequence to do the Sim4 alignment to include the possible
missing exons in the 5′ or 3′ end of the gene.

In most situations only the original genes are interesting
to researchers, occasionally, however, people want to see
some homologue or paralogue information. This can be
achieved by an easy modification of the LIS algorithm in
this paper: after finding the longest chain of HSPs that
codes for the original gene, we can remove them and
repeat the same procedure to find the remaining second
or third longest chain of HSPs and so on, which are the
candidate genes for those homologues and paralogues.

Although this paper only provides two examples
because of the space limit, it does not mean that the
program just works on anecdotal situations: Celera gene
discovery group has used it to process thousands of new
cDNA sequences. We understand that there are always
exceptions in biology, and the method we used may not

Table 6. LIS output

Hit #1

 ID : CRA|GA_x54KRCCNGEJ:1..2166028
 Align direction : reverse
 Fraction of aligned query : 91 %
 LIS #1
 cDNA_start cDNA_end Component_start Component_end Identity
 1 127 1527239 1527366 0.99
 127 321 1456409 1456603 1.00
 322 428 1325988 1326094 1.00
 426 470 1304332 1304376 1.00
 470 550 1301561 1301641 1.00
 547 646 1291836 1291935 1.00
 647 761 1284910 1285024 1.00
 762 910 1283939 1284087 1.00
 908 1005 1281276 1281373 1.00
 1006 1169 1279634 1279797 1.00
 1165 1239 1278873 1278947 1.00
 1237 1314 1276035 1276112 1.00
 1312 1565 1274276 1274529 1.00
 1561 1752 1260219 1260410 1.00
 1751 1842 1258921 1259012 1.00
 1842 1977 1257709 1257844 1.00
 <-- Gap -->
 2292 2425 1236533 1236666 1.00
 2424 2493 1233369 1233438 1.00
 2493 2583 1233045 1233135 1.00
 2583 2666 1232198 1232281 1.00
 2663 2779 1232006 1232122 1.00
 2780 2946 1231404 1231571 0.99
 2945 3055 1226029 1226139 1.00
 3051 3208 1225416 1225573 1.00
 3205 3408 1223798 1224001 1.00

Hit #2

 ID : CRA|GA_x54KRE2F1CS:1..13238
 Align direction : forward
 Fraction of aligned query : 9 %
 LIS #1 :
 cDNA_start cDNA_end Component_start Component_end Identity
 1976 2055 4986 5065 1.00
 2053 2293 11455 11695 1.00

always pick up the real gene as the number one candidate.
In case of uncertainties, such as when there are multiple
genomic regions containing the same full gene, the
program will always try to report all of them. Then human
annotators can have their chance to carefully exam those
hits using their expertise or other computational tools.
The sole purpose of the algorithm is to help scientists
reduce annotation effort and accelerate the discovery pace
without sacrificing sensitivity.

One of the areas in my current method that needs to be
improved in future is the way to implement context-logic.
For example, in example 2, genomic hit 2 and genomic hit
3 cover exactly the same region of the query sequence, but
genomic 3 was filtered out based on the current context-
logic rules. Such a strategy will miss a possibly useful hit,
genomic hit 3. To solve such a problem, we need to look
for smarter methods, like a hash-based or suffix tree-based
multiple genomic sequence alignment program. This work
is still in development. In the Celera Genomics program
described in this work, we just use simple factors such
as the genomic component lengths and their chromosome
numbers to improve the sensitivity of the context-logic
filter.

It is important to mention that right after this job was
done, which is between the end of 2000 and the beginning

1395

H.Zhang

of 2001, some other programs like SSAHA (Ning et
al., 2001) and BLAT (Kent, 2002) were published. Their
speeds, especially that of BLAT, are faster than BLAST.
BLAT can also print an aligned tabular formatted HSP
list that is similar to the LIS output in Table 6. Although
inferior in the speed edge, the BLAST program still has its
advantage and uniqueness in sensitivity and flexibility. For
program SSAHA, the same combinational strategy can
also be applied, e.g. SSAHA+LIS.

The program described in this paper can be used as a
BLAST result processor also in other BLAST searches,
so it is a more general purpose bioinformatics protocol
for the scientific community. Even all the examples in this
paper are from the Celera Genomics resource, the author
did test the same program successfully on the data from
public resources.

ACKNOWLEDGEMENTS
I am thankful to all my co-workers in the gene discovery
group of Celera Genomics, especially to Ms Rhonda
Brandon, Dr Maureen Higgins and Dr Ellen Beasley for
their helpful advice and discussion on the design of the
context-logic rules.

REFERENCES
Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.

(1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–
410.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

Birney,E. and Durbin,R. (1997) Dynamite: a flexible code gener-
ating language for dynamic programming methods used in se-
quence comparison. Proc. Fifth. Int. Conf. Intelligent Systems
Mol. Biol., 5, 56–64.

Delcher,A.L., Kasif,S., Fleischmann,R.D., Peterson,J., White,O.
and Salzberg,S.L. (1999) Alignment of whole genomes. Nucleic
Acids Res., 27, 2369–2376.

Florea,L., Hartzell,G., Zhang,Z., Rubin,G.M. and Miller,W. (1998)
Computer program for aligning a cDNA sequence with a
genomic DNA sequence. Genome Res., 8, 967–974.

Gusfield,D. (1997) Algorithms on Strings, Trees and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York.

Higgins,D., Thompson,J. and Gibson,T. (1994) CLUSTAL W:
improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22,
4673–4680.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome
Res., 12, 656–664.

Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,
Baldwin,J., Devon,K., Dewar,K., Doyle,M., FitzHugh,W. et al.
(2001) Initial sequencing and analysis of the human genome.
Nature, 409, 860–921.

Mott,R. (1997) EST GENOME: a program to align spliced DNA
sequences to unspliced genomic DNA. Comput. Appl. Biosci.,
13, 477–478.

Ning,Z., Cox,A.J. and Mullikin,J.C. (2001) SSAHA: a fast search
method for large DNA databases. Genome Res., 11, 1725–1729.

Pearson,W.R. and Lipman,D.J. (1998) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444–
2448.

Rognes,T. and Seeberg,E. (1998) SALSA: improved protein
database searching by a new algorithm for assembly of se-
quence fragments into gapped alignments. Bioinformatics, 14,
839–845.

Skiena,S.S. (1997) The Algorithm Design Manual. Springer, New
York.

Venter,J.C., Adams,M.D., Myers,E.W., Li,P.W., Mural,R.J.,
Sutton,G.G., Smith,H.O., Yandell,M., Evans,C.A., Holt,R.A. et
al. (2001) The sequence of the human genome. Science, 291,
1304–1351.

Wheelen,S.J., Church,D.M. and Ostell,J.M. (2001) Spidey: a tool
for mRNA-to-genomic alignments. Genome Res., 11, 1952–
1957.

Zhang,Z., Schwartz,S., Wagner,L. and Miller,W. (2000) A greedy
algorithm for aligning DNA sequences. J. Comput. Biol., 7, 203–
214.

1396

