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ABSTRACT A new Hybrid Monte Carlo (HMC)
algorithm has been developed to test protein poten-
tial functions and, ultimately, refine protein struc-
tures. The main principle of this algorithm is, in
each cycle, a new trial conformation is generated by
carrying out a short period of molecular dynamics
(MD) iterations with a set of random parameters
(including the MD time step, the number of MD
steps, the MD temperature, and the seed for initial
MD velocity assignment); then to accept or reject
the new conformation on the basis of the Metropolis
criterion. The novelty in this paper is that the
potential in MD iterations is different from that in
the MC step. In the former, it is a molecular mechan-
ics potential, in the latter it is a knowledge-based
potential (KBP). Directed by the KBP, the MD itera-
tion is used to search conformational space for
realistic conformations with low KBP energy. It
circumvents the difficulty in using KBP functions
directly in MD simulation, as KBP functions are
typically incomplete, and do not always have con-
tinuous derivatives required for the calculation of
the forces. The new algorithm has been tested in
explorations of conformational space. In these test
calculations the KBP energy was found to drop
below the value for the native conformation, and the
correlation between the root mean square deviation
(RMSD) and the KBP energy was shown to be differ-
ent from the test results in other references. At the
present time, the algorithm is useful for testing new
KBP functions. Furthermore, if a KBP function can
be found for which the native conformation has the
lowest energy and the energy/RMSD correlation is
good, then this new algorithm also will be a tool for
refinement of the theory-based structural models.
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INTRODUCTION

The present strategies for the prediction of protein
tertiary structures could be divided into two main catego-
ries: comparative modeling and de novo prediction. In the
former, one can build some successful models of proteins
from their homologous analogues, but in many cases,
techniques such as ‘‘threading’’ need to be applied for those
proteins that have very low sequence similarity to the

known protein structures. In de novo prediction, random
initial conformations can be folded to near-native conforma-
tions using some conformational search methods and force
fields. One common premise of the two methods is the
energy or score function that can effectively distinguish
the near-native conformation from alternate conforma-
tions.

To stringently test an energy function, we need a large
number of decoys in various kinds of test sets. These
decoys, or alternate conformations, are expected to be
compact, globular, and not very different from native
conformations. There are various methods to generate
those test sets.1 The most generally used one is based on
the sequence-recognize-structure protocol developed by
Hendlich et al.2 The target sequence is modeled as a
sequence fragment of all larger protein structures and is
threaded through each larger protein sequence advancing
one residue at a time, generating a larger number of
alternate structures. The structures generated by this
method are sometimes nonnative: they are usually not
compact and side chains are often disregarded. In addi-
tion, the structure library generated by this method is
quite limited for large proteins. Another major strategy for
generating test sets is the MD trajectory method.3–9 In this
method, a significant amount of conformational space in
the neighborhood of the native structure can be sampled
by the MD simulation. Compared to the conformations in
the threading test set, these alternate structures have
both the backbone and the side-chain atoms, moreover,
they have reasonable atomic level packing and interaction.
Thus they are more native-like. On the other hand, the test
structures can be very close to the real native structure,
and therefore be more challenging for energy functions.
Recently, Wang et al.3–4 have shown that many energy
functions, which were proved to perform very well in the
threading test, failed significantly in the MD trajectory
test. They showed that a potential based on an atomic
solvation model, the WZS model, trained by neural net-
works performed impressively in discriminating the na-
tive structure among many molecular dynamics (MD)-
generated decoys. Following this initial work, other
researchers have tested various potentials on MD trajecto-
ries.5–9 Huang et al.5,6 demonstrated that a very simple
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hydrophobic fitness (HF) potential could impressively dis-
criminate the native structures of several proteins among
the large conformations pools generated by MD simula-
tions. Similarly, Debolt et al.7 developed two atomic-level
potentials shown to be good in the rank identifying of the
progressively less native-like structures generated by MD
sampling.

Useful as the MD trajectory test set is, it is often hard for
us to judge how convincing it is. The reason is that MD
trajectories can vary significantly depending on the simu-
lation conditions such as temperature, initial velocity, and
environment. Therefore in the present paper we develop a
new hybrid algorithm that can be used to search the
conformational space of proteins under dynamical MD
simulation conditions (variable temperature and starting
velocity, etc.); moreover, it uses the KBP energy to direct
the MD simulations in order to search for the conforma-
tional space of low knowledge-based potential (KBP) en-
ergy. This new hybrid algorithm is an extension of the
Hybrid Monte Carlo algorithm (HMC) developed by Duane
et al.10 originally used in quantum chromodynamics.

The Hybrid Monte Carlo algorithm is a kind of mixture
of molecular dynamics and Monte Carlo algorithm.10–14

The essential idea of the algorithm is to carry out L steps of
molecular dynamics iterations with a Monte Carlo step
between each series of L dynamic iterations. Hence, the L
iterations correspond to the random perturbation of the
conformations in the classical MC approaches. For large L
and vanishing MC contributions, the technique converges
to classical molecular dynamics. The HMC algorithm was
shown to be a protocol with a more powerful conforma-
tional searching ability and faster-convergence character-
istic than the traditional MD method in the simulation of
biopolymers.10–14

Although there are various new powerful algorithms
like HMC being developed (see reviews of Byrne et al.15

and Leontidis et al.16), they still have obstacle in sampling
the conformational space for lack of good energy functions.
For example, Novotny et al.17,18 demonstrated that it is
hard for the traditional molecular mechanics force fields to
discriminate the native structure from the alternate struc-
tures.

In order to solve the problem, various knowledge-based
potentials were derived from the protein structure data-
base (for review of applications, see Sippl,19–21 Jernigan
and Bahar,22 Rooman and Wodak,23 Godzik et al.,24 Miya-
zawa and Jernigan,25 Thomas and Dill,26 and Moult27). It
has been demonstrated that they are able to efficiently
discriminate the correct fold against other decoys. A very
new method for calculating the total conformational free
energy of proteins in water solvent was developed by
Hermans and coworkers28 lately. It used both dynamics
simulations with an explicit solvent and an implicit sol-
vent continuum model. The new energy function can
successfully discriminate the misfolded conformations.

A natural idea to develop a new folding algorithm is to
combine advanced conformational searching methods with
the newly developed potentials.29 The new HMC algorithm
is one of the steps in this direction.

METHODS

The framework of the new HMC algorithm is illustrated
in Figure 1. The initial conformation of the protein has the
KBP energy of E0. A short period of MD simulation using
CHARMm30 is carried out to generate a trial conformation.
The KBP energy of the newly generated trial conformation
is E1. The probability of accepting the conformation is
given by the Metropolis criterion

P 5 min 51,e2DE/kT6

where E 5 E1 2 E0 , and k is the Boltzmann constant. After
accepting or rejecting the trial conformation, the next cycle
of simulation is repeated with a new set of random
parameters including the MD-time step, the number of
MD steps, the MD temperature and the seed for initial MD
velocity assignments. The temperature T in the Metropolis
criterion is gradually decreased during simulation (simu-
lated annealing).

In normal MC, the trial conformation would be gener-
ated by randomly perturbing the initial conformation
typically by rotating some torsion angles, while in this
hybrid MC algorithm, it was generated by a random MD
iteration.

Fig. 1. Frame work of the new hybrid Monte Carlo algorithm.
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All the MD simulations in this work were carried out in
vacuum, with a distance- dependent dielectric constant.
The time step of the MD simulation is a random value
between 0.5 and 5 femto-seconds (fs). Each series of MD
iteration is a heating procedure. The initial velocity is
assigned from a Gaussian distribution around 300 K. The
system is heated from 300 K to a random temperature
between 300 and MD_T. The default value of MD_T is 350.
In the case where the system is trapped in one conforma-
tion for too long (e.g., staying in the same conformation in
more than 20 MC cycles successively), MD_T will be
increased 20 percent each time the new conformation is
rejected until it reaches 600. And once the system finds a
new acceptable state, MD_T is reset to the initial value of
350. In the same way, the number of MD iteration steps in
one MC cycle is also set to a random number between 1 and
MD_STEP. And MD_STEP has the default value of 100
and will be increased if the simulation is trapped. In some
systems, a short energy minimization was carried out
between the MD iterations and the Monte Carlo step to
relieve bad contacts.

In this algorithm, the MD iteration basically works as a
conformational searching tool. The CHARMm potential
energy is not related to the Metropolis criterion except that
it becomes positive, which means that the new conforma-
tion has some very unfavorable interactions, such as bad
steric packing or electrostatic distribution, etc. Under this
special circumstance the new conformation would be re-
jected absolutely.

Since there are so many KBP functions available in the
literature and their performance varies a lot dependent on
the test sets, this work only specifically selected those
potentials already demonstrated to perform well in MD
trajectory test set. They are the hydrophobic fitness (HF)
potential developed by Huang et al.,5,6 the pair-wise atomic
potential (PWA) by Debolt et al.7 and the WZS potential by
Wang et al.3,4

The first energy function we tried is the HF score. This is
a quite simplified energy function. It enumerates contacts
between hydrophobic residues while weighting their sum
by the total number of residues surrounding these hydro-
phobic residues. Thus, it prefers compact folds with the
desired structural feature of a buried, intact core. In their
work, Huang et al.6 have shown that this simple energy
function can impressively rank the native structures as
the lowest energy conformations among thousands of
decoys generated by MD simulations; moreover, it was
shown to have a good RMSD/energy correlation.

The second energy function, PWA potential is a detailed
atomic-level pair-wise function. It reflects the contact
preference of protein atomic pairs. The energy value was
shown to be correlated well to the RMSD of the structure
during MD simulation.7 The third energy function tested
in this work is the WZS potential. It is based on a solvation
model trained by neural networks, and was demonstrated
to be able to impressively discriminate almost all of the
decoys in the near native space generated by MD simula-
tions.3,4

Three proteins were selected as the testing systems in
this paper: protein 4icb, protein A and protein 2i1b.
Protein 4icb is a four-helix bundle. The reason to select
this protein is that it is the most successful example for the
HF energy as illustrated in the paper of Huang et al.6 In
the work, it was demonstrated that the native structure of
this protein is ranked as the lowest energy conformation
among 2,000 decoys generated by the MD simulation,
among them 1,000 decoys are around 1.96 Å and the other
1,000 are around 4.80 Å in RMSD from the native struc-
ture. In our test, the initial conformation of protein 4icb
was generated from in vacuo high temperature MD simula-
tion at 600 K. The C atom RMSD from the native structure
is 3.4 Å.

The second protein, protein A, is a small protein consist-
ing of three helix bundles. It’s folding pathway has been
extensively studied by several groups (Kolinski et al.,31

Olszewski et al.,32 Boczko and Brooks33). The reason to
select this protein is that it is a real system to test the
HMC algorithm for a refinement of the protein structure,
as the initial conformation is directly from an ab initio
simulation lattice model simulation by Kolinski et al.31

The C RMSD from the native structure is 4.1 Å.
To also test the performance of the potentials in a more

grossly non-native conformational space, the third protein
2i1b was selected from the EMBL deliberately misfolded
set.34 The native fold of 2i1b is an all- protein, while the

Fig. 2. Variations of the HF energy, the RMSD and the CHARMm
energy during the simulation of protein 4icb. The dashed line in (a)
represents the native energy. MC temperature: 1–0.9.
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misfolded conformation was generated by swapping the
residues of 2i1b to another protein 1lh1, which has the
same sequence length but is an all- protein. The side-chain
packing was annealed using a Monte Carlo process.34 The
RMSD between the conformation and the native structure
is 17.5 Å. In the test of this system, an extra short energy
minimization consisting of 50 steps of Steepest Descent
(SD) minimization was carried out following the MD
iterations to relieve the bad contacts within the structure.

The main program of the HMC algorithm was imple-
mented in C11, which uses ‘‘system’’ commands to ex-
ecute the CHARMm and KBP code. The advantage here is
that it is very easy to switch KBP functions, as it only
needs the executable codes of the potential functions,
which are simply ‘‘plugged into’’ the main program (Plug
and Play). Thus one does not need to write a new code for a
new potential.

RESULT AND DISCUSSION

The main question our work addresses is: can this
algorithm be basically used as a tool for the performance
test of energy functions? And more interestingly, can it
refine protein structures? To address the above question
we tested the KBP functions on three proteins: 4icb,
protein A and 2i1b.

In the first system (protein 4icb), Figure 2 displays the
variation of the HF energy during the hybrid simulation.
The HF energy of the initial conformation is well above the

native structure energy, which conforms to the original
work of Huang et al.,6 i.e., this potential works well in
discriminating the MD decoys from the native structure.
In the following HMC simulation, however, the energy was
significantly minimized to lower than the native structure
energy within only 100 Monte Carlo steps. The final
conformation has the RMSD around 3.2 Å, which means
that we have found a decoy structure with an energy below
the native structure energy. In this case, the HMC algo-
rithm is a stricter test method than the MD trajectory test
used in the original reference (see Figure 2 in ref. 6).

During the energy minimization, we also investigated
the variation of the RMSD. When the energy declined, the
RMSD changed just slightly, from 3.4 Å to 3.2 Å. Several
runs with different hybrid algorithm parameters were
tested, most of which repeat this weak trend.

The CHARMm potential energy does not show obvious
correlation with the RMSD variation (Figure 2c). There
could be at least two factors for this, first, we have not
included solvation effects directly in the MD simulation;
secondly, as pointed out by a couple of works3,4,6 ordinary
molecular mechanics force fields usually do not find a good
energy/RMSD correlation.

As a next step, we checked if more detailed atomic-level
KBP functions would work as more sensitive tool in the
hybrid algorithm. From Figure 3 we can see that the PWA
energy and the RMSD were simultaneously minimized
during the simulation. The energy curve and RMSD curve

Fig. 3. Variations of the PWA energy, the RMSD and the CHARMm
energy during the simulation of protein 4icb. The dashed line in (a)
represents the native energy. MC temperature: 10–6.

Fig. 4. Variations of the WZS energy, the RMSD and the CHARMm
energy during the simulation of protein 4icb. The dashed line in (a)
represents the native energy. MC temperature: 5–0.5.
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are not exactly the same, however their trends are very
similar.

During the simulations, the energy of the third potential
(WZS potential) stayed higher than the native energy
shown in Figure 4, which suggested that this potential
could well discriminate the native structure from the
MD-generated conformations in this test system. How-
ever, the RMSD went up as the energy went down in the
simulation, although it was shown in the original refer-
ence that the WZS potential has a good energy/RMSD
correlation (Fig. 5 in ref. 4).

The second system, protein A, is not only a decoy system,
but also a real problem for the structure refinement
method, as the initial conformation is directly from an ab
initio simulation.31 It can be seen from Figure 5 that, like
the first system, the HF potential energy quickly plunged
lower than the native structure energy after only a few MC
steps. Here the resultant conformation is still far away
from the native structure (RMSD around 4.1 Å). We can
see in Figure 6 and Figure 7 that the PWA potential and
the WZS potential met the same trouble. They all can be

minimized significantly, the RMSD curve, however, went
up slightly.

The third system, protein 2i1b, was started from a
misfolded conformation far away from the native struc-
ture. It is expected that the KBP potentials should be able
to correctly identify the misfolded conformation from the
native fold. As seen in Figure 8 to Figure 10, the three KBP
functions did verify their discrimination ability for the
initial conformations. The PWA potential, however, was
minimized to be lower than the native energy after about
150 steps, when the RMSD is still very high (around 17.4
Å). The reason for the difference might result from the
physical basis of the three energy functions. When brows-
ing the misfolded conformation in a graphical interface, we
noticed that there are quite a few exposed hydrophobic and
buried hydrophilic residues. The major factor in the HF
and the WZS potentials is the hydrophobic effect, while the
PWA potential mainly reflect a pair-wise preference be-
tween residues, which is only partly related to the hydro-
phobic effect. Therefore, in this system, the HF potential
and the WZS potential are believed to perform better than
the PWA potential.

Fig. 5. Variations of the HF energy, the RMSD and the CHARMm
energy during the simulation of protein A. The dashed line represents the
native energy. MC temperature: 1–0.9.

Fig. 6. Variations of the PWA energy, the RMSD and the CHARMm
energy during the simulation of protein A. The dashed line represents the
native energy. MC simulated annealing temperature: 5–1.
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Based on all the test results above, one can see that the
new HMC algorithm is a useful tool to test the KBP
functions; moreover, in many ways, this new algorithm is
stricter than a classical MD trajectory method. The reason
is this: in the HMC algorithm, the MD simulation dynami-
cally searches for the conformational space of low KBP
energy, therefore it is more aggressive than the static
energy function test methods such as the MD trajectory
method or the threading method. Actually, it was illus-
trated in this work that an energy minimum in the
conformational space distant to the native structure can
always be found for these potentials.

Although all the potential functions tested in this paper
have been demonstrated to be good at energy/RMSD
correlation in the MD trajectory test in literatures, the
inclusion of them in the new HMC algorithm does not
bring good performance in the structure refinement. Actu-
ally, this is an unfortunate fact for the present protein-
folding community: there is no ideal energy function
available yet. Most of the present energy functions de-
scribe only part of the interactions in protein folding, such

as hydrophobic packing, pair-wise preference or solvation
surface exposure. One of the possible ways to improve
structure refinement results might be to use some sort of
combinations of different functions. Besides that, one can
argue that better simulation strategies are yet required
such as carrying out the MD simulation in solvent instead
of in vacuum or selecting more appropriate MD/MC param-
eters.

Because we are prohibited by the searching extent of
MD iterations and also depend on the cooperation between
the MD iterations and the KBP functions, the conforma-
tional searching ability of this new algorithm is still not
broad enough to cover a pathway between a grossly
non-native conformation and the native conformation.
Thus we postulate that this new algorithm works as a
structure refinement tool.

One could argue that using the KBP function alone in
any MD or MC minimization could produce a better decoy
set than using the present algorithm, however, the KBP
functions are typically not continuously differentiable,
making it hard to implement them in any MD simulation.
Second, although there is a general way to use KBP

Fig. 7. Variations of the WZS energy, the RMSD and the CHARMm
energy during the simulation of protein A. The dashed line represents the
native energy. MC temperature: 5–1.

Fig. 8. Variations of the HF energy, the RMSD and the CHARMm
energy during the simulation of protein 2i1b. The dashed line represents
the native energy. MC temperature: 0.5–0.1.
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functions in MC or genetic algorithm (GA), one usually
needs specific programming for different KBP functions. In
our algorithm, however, one does not need to write a single
line of new code when testing a new potential. Lastly, we
have illustrated that our algorithm generated more realis-
tic decoys, which is proved by the molecular mechanics
potential energy.

CONCLUSION

The new Hybrid Monte Carlo algorithm was demon-
strated to be a useful tool for energy function test. It found
out structure decoys that have lower energies than the
native structures, which were not revealed by other meth-
ods; and the RMSD/energy correlation is illustrated to be
different from what we saw in the MD trajectory test. This
algorithm is also expected to be a protocol for protein
structure refinement given a better energy function.
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