
Protein Tertiary Structures:
Prediction from Amino Acid
Sequences
Hongyu Zhang, Celera Genomics, Rockville, Maryland, USA

Protein tertiary structures contain key information for the understanding of the

relationship between protein amino acid sequences and their biological functions. A large

collection of computational algorithms has been developed to predict protein tertiary

structures from their sequences in computers.

Introduction

Proteins are polypeptide chains consisting of a large
number of amino acid residues that are covalently linked
together via amide bonds. The order in which the 20
different amino acids are arranged in a protein chain is also
called the primary structure of the protein. The polypep-
tide backbones of proteins exist in particular conforma-
tions known as the secondary structures. The secondary
structures as well as their side-chains are then packed into
three-dimensional structures referred to as the tertiary
structures.
The biological function of a protein is often intimately

dependent upon its tertiary structure. X-ray crystallogra-
phy and nuclear magnetic resonance are the two most
mature experimental methods used to provide detailed
information about protein structures.However, to date the
majority of the proteins still do not have experimentally
determined structures available. As at December 2000,
there were about 14 000 structures available in the protein
data bank (PDB, http://www.pdb.org), and there are
about 10 106 000 sequence records sequences in GenBank
(http://www.ncbi.nlm.nih.gov/Genbank). Thus theoreti-
cal methods are very important tools to help biologists
obtain protein structure information. The goal of theore-
tical research is not only to predict the structures of
proteins but also to understand howproteinmolecules fold
into the native structures.
The current methods for protein structure prediction

can be roughly divided into three major categories:
comparativemodelling; threading; and ab initioprediction.
For a given target protein with unknown structure, the
general procedure for predicting its structure is described
in Figure 1.

Comparative Modelling

From the available experimental data it has been observed
that proteins with similar amino acid sequences usually

adopt similar structures. Therefore, the easiest and also
the most accurate way to predict the protein tertiary
structure is to build the structure based on sequence
relatives that have high sequence similarities to the
target protein according to the sequence alignment
results. Such an approach is called comparativemodelling.
In most cases those sequence relatives and the target
protein belong to the same functional family in
biology, i.e. they are homologues of each other. Thus,
traditionally, comparative modelling is also called homo-
logy modelling.
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Database search

An initial step for comparative modelling is to check
whether there is any protein in the current PDB having the
similar sequence or function to the target protein. A
protein found will then serve as the structural template for
modelling the target protein. In most situations, the
searching of the template has to proceed using a sequence
comparison algorithm that is able to identify the global
sequence similarity. In some cases, even when there is no
global sequence similarity between two protein sequences,
a closematch between some important sequence fragments
or local sequence patterns (also called motifs) is still
significant enough for us to identify the homologous
relationship between protein sequences.
To start a database search, one first needs a score

function that can evaluate the similarity between amino
acids. Various score functions are available. The simplest
one is the identity score function, which gives score 1 for an
amino acid matched to the same type of amino acid and
score 0 for an amino acid mutated to a different type of
amino acid. More advanced score functions are based on
the statistics of the amino acid substitution frequencies in
known aligned homologous sequence families. Among
them,most popular ones areDayhoff (Dayhoff et al., 1978)
and Blosum (Henikoff and Henikoff, 1992) matrices. The
20� 20 elements in the matrices represent the substitution
scores between 20 natural amino acids.
To search a large sequence database, the computer

algorithms have to be able to find the close sequences
correctly and quickly. Some quite efficient algorithms have
been developed to solve the database search time problem,
such as BLAST (Altschul et al., 1990, 1997) and FASTA
(Pearson and Lipman, 1988). BLAST is currently the most
popular database search protocol. Its central idea is to
transform thewhole sequence comparison problem into an
easier problem of local fragment matching and extension.
FASTA achieves much of its speed and selectivity by using
a lookup table to locate all identities or groups of identities
between two sequences (Pearson, 1990).

Sequence alignment

After finding the template sequences for the target
sequence in the structure database, the second step in
comparativemodelling is to align the target sequence to the
template sequence. An alignment algorithm is used to find
an optimal alignment for the two sequences. The result will
indicate the matching, insertion or deletion of the amino
acids between the target sequence and the template
sequence. Thus, from a sequence alignment one can decide
the structural features of each amino acid in the target
protein based on the structural features of its correspond-
ing template residue. If there are multiple templates, a
multiple sequence alignment can further improve the
accuracy of sequence–structure alignment.

There is no trivial solution for aligning two protein
sequences because of the vast number of combinations
between amino acid pairs. Fortunately, a classical algo-
rithm, originally from the computer science field, called the
dynamic programming algorithm can guarantee to quickly
find the optimal alignment given a score function (Needle-
man andWunsch, 1970; Smith andWaterman, 1981). The
basic philosophy of the algorithm is to build up an optimal
alignment using previous solutions to smaller subse-
quences.
The central step inNeedleman–Wunsch algorithm is the

construction of a score matrix. Each element in the score
matrix, F(i,j), is the score of the best alignment between the
initial segment x1,_i of sequence x and y1,_j of sequence y.
The ‘trick’ of the algorithm is that F(i,j) can be built
recursively according to eqn [1].

Fði; jÞ ¼ max
Fði � 1; j � 1Þ þ sðxi; yjÞ
Fði � 1; jÞ � �
Fði; j � 1Þ � �

8<
: ½1�

In eqn [1], s(xi,yj) is the score of aligning a residue
pair (xi,yj), and d is the score of a residue aligned
to a gap. The principle is that the best alignment score
F(i,j) can only come from the three possible ways
shown in the above equation: either the last residues of
the two sequences (xi and yj), aligned together, or any of
themaligned to a gap.At the beginning,F(0,0) is initialized
to 0, and F(i,0), F(0,j) are initialized to2 id and2 jd
because they represent i or j residues that are aligned to
gaps.
The Needleman–Wunsch algorithm is used to look

for the best match between two sequences from one
end to the other. A more common situation is looking
for the best alignment between the subsequences of
two sequences, which can locate the common regions
shared between two proteins that could have little
global similarity. A very similar dynamic algorithm called
the Smith–Waterman algorithm was developed to solve
such local alignment problems (Smith and Waterman,
1981).
These algorithms have become the standard algorithms in

this field after 20 years of improvement. Researchers can
download their mature implementation programs from the
Internet, such as the popular CLUSTAL program (http://
www-igbmc.u-strasbg.fr/BioInfo/ClustalW/) (Higgins et al.,
1989).
After automatically constructing the initial alignment

using the dynamic programming technique, some human
intervention is helpful to adjust the errors in the
computer-generated alignment; graphic tools with the
addition of human expertise can identify some possibly
inappropriate matches, such as a hydrophobic residue in
the target being matched to the surface region in the
template structure.
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Building the homology model

Once the alignment is completed, one can start to build the
structure model for the target protein based on the
template structure. The major steps in building the
homology model are conserved region modelling and loop
region modelling. Conserved regions refer to those regions
with conserved amino acids in the sequence alignment,
most often those regions having standard secondary
structures (a helix and b strands) in the template structure.
Those regions will very probably keep their conformations
unchanged from the template structure to the target
structure, and are therefore easy to build at the very
beginning. It is usually straightforward to copy the
structure in those regions from the template to the target.
Loop regions are hard to model because they are less

conserved in structure. In most situations they are located
on the protein surface exposed to the solvent and do not
have standard secondary structures. Traditionally, loop-
modelling methods were categorized into two kinds of
approaches: knowledge-based approach and ab initio
approaches (for details, see the review section in Zhang
et al., 1997). The knowledge-based approach extracts the
knowledge from the current protein structure database and
then applies it in the building of the new loops; the ab initio
approach usually uses some kinds of theoretical conforma-
tional searchmethod such as theMonteCarlo or simulated
annealing methods (Leach, 1996) to build up the new
loops.Ab initiomethods aremore generalmethods because
they are not prohibited by the current size of the structure
database, but traditionally they are much slower than the
knowledge-based methods and therefore are not suitable
for modelling very long loops. Some improved ab initio
algorithms have achieved very high efficiency and can
successfully model long protein loops very quickly (Zhang
et al., 1997).Knowledge-based and ab initio algorithms can
be combined together to improve the modelling accuracy;
for example, one can apply both methods in the same loop
region and, if they produce the similar result, have higher
confidence to one’s predictions.
After constructing the structures in both conserved

regions and loop regions, the last steps of comparative
modelling include side-chain modelling and model evalua-
tion/refinement.Methods for side-chainmodelling include
Monte Carlo, genetic algorithm, side-chain rotamer
library and others (Leach, 1996). They have already
reached very high precision (Dunbrack, 1999). The model
evaluation usually includes the checking of Ramanchan-
dra graphs and atomic packing. Molecular mechanics and
molecular dynamics are common tools (Leach, 1996) for
refining the final model.
It shouldbe pointedout that the aboveprocedure is not a

simple one-way street; in most cases it is an iterative
procedure. For example, one can start with an initial
sequence alignment and build the structure model; after
evaluating the structure model one can go back to correct

the misaligned residues or inappropriately generated side-
chains and repeat the modelling procedure again.
For some years there have been very good commercial

packages available in this field that bundle the comparative
modelling modules into one piece of software, plus some
other extra functions. They often run on powerful Unix
workstations and provide very user-friendly graphic
interfaces. Among the most popular ones are QUANTA
and Insight-II produced by MSI and Sybyl produced by
Tripos.

Threading

Of all the proteins in the current sequence database, only
about 10–20% of sequences can be modelled by compara-
tive modelling methods. For all the other sequences, it is
difficult to find sequence relatives using plain sequence
comparison methods.
Threading improves the sequence alignment sensitivity

by introducing structural information into the alignment,
where the structural information refers to the secondary or
tertiary structural features of proteins. This helps because
amino acids have different propensities for different
secondary structures or tertiary structure environments.
For example, some amino acids aremore often observed in
a helices than in other secondary structure units, while
some amino acids appear more frequently in hydrophobic
environments than do others.
The threading method is sometimes called the fold

recognition method. Its basic assumption is that the
number of protein folds existing in nature is limited, from
several hundreds to over 1000, according to different
theories (Wang, 1998). The goal of fold recognition is to
identify the correct fold for the target sequence.
Most of the threading algorithms are based on the

dynamic algorithm, but the key difference is the scoring
strategy: in most threading algorithms the score functions
include the structure information in addition to the
sequence information. The earliest threading approach is
the ‘3D profiles’ method (Bowie et al., 1991; Luthy et al.,
1992), in which the structural environment in each residue
positionof the template is classified into 18 classes basedon
the position’s burial status, local secondary structure and
polarity. The threading score matrix is then deduced from
the probability of all amino acids present in those 18 classes
of structure environment. For example, if a hydrophobic
residue is aligned to a buried template position, the score
matrix is supposed to give a high score to encourage such a
type of sequence–structure match. The threading methods
of Jones et al. (1992) and Godzik et al. (1992) are based on
the protein residue pairwise interaction energy methods
such as the potential of mean forcemethod of Sippl (1990).
The energy formulae are derived from statistical analyses
of current protein structure database and reflect the
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residue–residue distance distribution probabilities in
known protein structures. In each step of the threading
procedure, the alignment score is calculated by adding
up all the pairwise interaction energies between each
target residue and the template residues surrounding
them.
In addition to the above methods using the sequence–

structurematch scores, some other threadingmethods also
use the structure–structure match scores to evaluate the
alignment between the target and the template. In those
methods, although the target structure is unknown,
one can still characterize it using some predicted
structure properties, such as the predicted secondary
structures or the predicted residue burial status (Rost
and Sander, 1994).
Another important threading method is the Profile

Hidden Markov Model method (HMM, see review of
Durbin et al., 1998). This is a very sensitive tool in
searching for remote homologues because of its strong
statistics background. A HMM is basically a probability
distribution model. To build the profile HMM, first all the
sequences in the database need to be clustered into a
handful of families. Each family is then used to train a
HMM. Finally, the target sequence is aligned to
those HMMs to identify the family to which it belongs.
Although the structural information usually is not
explicitly characterized in HMMs, it is implied in the
corresponding statistical models. A HMM algorithm
developed by Di Francesco et al. (1997a,b) used
the structure information directly, in which the target
structure is characterized by the predicted secondary
structure while the template structures are represented by
profile HMMs trained on the template’s secondary
structure patterns.
Some advanced sequence search methods such as PSI-

BLAST (Altschul, 1997) utilize more sensitive position-
dependent scorematrices, which are very good at detecting
remote homologues. Some people also consider them to
belong to threading methods because of their high
searching sensitivity compared to basic database searching
algorithms.
Although threading methods are good at detecting

remote homologues, they are often not able to give good
sequence–structure alignment. The main reason is that the
structure information is included in threading with many
approximations, and thus can introduce significant noise
into the final alignment. For example, most threading
methods use the so-called ‘frozen’ approximation, that is
they assume that the target residues are in the same
environments as the template residues if they belong
to the same structural fold. In reality, even two closely
homologous structures can have slightly different
residue environments, especially in loop regions. This is
one reason why Bryant’s group use only conserved regions
in threading (Bryant and Lawrence, 1993; Madej et al.,
1995).

Ab Initio Prediction

Despite the great effort previously spent on comparative
modelling and threading, there remains a large proportion
of protein sequences with neither homologues nor clear
folds detected. From the early 1970s, people began starting
to look for ambitious ab initio algorithms that could
directly attack the protein folding problem, that is to use
supercomputers to explore the huge conformational space
of protein molecules and find the pathways that lead
proteins to their native conformations. The methods are
based on the assumption that a protein molecule’s native
structure is the lowest free energy state among all its
possible alternative conformations. This assumption has
been demonstrated to be true by much experimental data,
most famously the pioneering experiment of Christian
Anfinsen. The attraction of the ab initio approach is that it
not only promises to solve the protein structure prediction
problem without being limited by the current protein
structure database but it can also provide theoretical
explanations of how proteins fold into their native
structures – in other words the answer to the famous
protein folding enigma.
From the 1970s, scientists from various fields, including

biology, chemistry, physics, computer science and mathe-
matics, have collaborated to develop all sorts of ab initio
structure prediction methods and have published numer-
ous papers. However, no significant progress was made
over a very long period. In recent years, because of the
rapid expansion of experimental data and the rapid
increase in computer speeds, deeper insight has been
gained to the protein folding problem and new algorithms
have been developed that are beginning to show encoura-
ging results in the blind protein structure prediction tests
(Moult et al., 1999).

Figure 2 gives a schematic view of ab initio prediction
algorithms (after Lin, 1996). The figure indicates that three
components are essential for designing an ab initio
algorithm, shown as the three dimensions in the figure.
All the ab initio folding algorithms can be considered
different combinations of the three components.
The first dimension in Figure2 is the proteinmodel, which

is used to characterize the protein molecules in the
computer. This can be as complicated as the explicit
atomic model in the classic molecular dynamics programs,
in which all protein atoms and their related physical
chemical properties (bond, order, length and angle,
electronic charge, etc.) are explicitly described; or it can
be a simple model like the simplified residues model, in
which each residue is represented as a single particle in
space. The lattice model represents the protein atoms or
residues using discrete integer points in three-dimensional
space, so the program is faster. Generally, the more
complicated amodel, the better it can describe the physical
chemical properties of proteins, but also the slower the
algorithm will be.
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Potential function is the seconddimension in Figure2; this
describes the physical chemical interactions both within
protein molecules and between protein molecules and their
environments. The ideal potential function is expected to
rank the native conformation as the lowest free energy
conformation among all possible alternatives. One of the
most popular potential functions used in ab initio algo-
rithms is themolecularmechanics potential widely adopted
in molecular dynamics and molecular mechanics simula-
tions, such as CHARMM (Brooks et al., 1993), AMBER
(Pearlman et al., 1995) andGROMOS (vanGunsteren and
Berendsen, 1990). Its general form is shown in eqn [2].

Vðr1; r1; :::; rNÞ ¼
X
bonds

1

2
kbðb� b0Þ

2 þ
X
angles

1

2
k�ð�� �0Þ

2

þ
X

improper
dihedrals

1

2
k�ð�� �0Þ

2

þ
X

dihedrals

k’ 1þ cosðn’� �Þ�½

þ
X

pairsði; jÞ

C12ði; jÞ
r12ij

�
C6ði; jÞ
r6ij

þ
qiqj

4�"0"rrij

" #

[2]

The first term in eqn [2] is the bond stretch interaction along
the covalent bond direction. It is represented by a harmonic

function, in which b is the bond length and the values
of the minimum energy bond length b0 and force
constant kb are dependent on the specific bond type.
The second term is the bond angle bending potential,
which is a three-body interaction; y, y0 and ky are the
bond angle, minimum-energy bond angle and force
constant. The four-body interactions fall into two cate-
gories: one is a harmonic potential to constrain the
dihedral angle x, the other is a cosine potential that
allows the dihedral angle j to rotate 3608; kx, kj, x0, d
and n are the corresponding constants. The last summation
term is the sum of two terms representing nonbonding
interactions, which consist of the van der Waals potential
and the electrostatic potential between atoms i and j. C12
and C6 are the Lennard-Jones constants, rij is the distance
between atoms i and j, and e0 and er are the dielectric
constant in vacuum and the relative dielectric constant in a
medium.
The advantage of the molecular mechanics potentials is

that they can explicitly characterize the physical chemical
interactions in proteins at detailed atomic scale; but they
are very slow to compute and also are not good for
evaluating the solvent interactions, especially the impor-
tant solvent entropy effect in protein folding. Thus, many
of the latest ab initio folding algorithms prefer to use simple
threading potentials as described earlier. The threading
potentials, which are also called knowledge-based poten-
tials, are derived from the current protein structure
database and reflect either residue–residue distance
distribution probabilities or residue-to-environment and
residue-to-structure propensities.
The last dimension in Figure 2 is the conformational

search method, which is how the conformational space of
proteins is explored to look for the lowest free energy
conformation. Since proteins are long-chain biopolymers,
they have a large number of internal degrees of freedom
originating from both main-chain and side-chain dihedral
angles. The simplest conformational search method is the
systematic search. This divides each dihedral angle into a
few discrete states approximately representing the local
energy minima of that angle. One can then generate
approximately all the possible conformations of the whole
molecule by combining all the states of each dihedral
angle. Because of the exponential increase in the number
of combinations as the molecular size increases, it is
actually impossible to use this method in any real protein
systems.
The problem of exploring the conformational space of

proteins is a typical combinatorial problem in computer
science, which has been demonstrated to be NP-complete
in complexity (Ngo andMarks, 1992). This means that no
efficient algorithm is guaranteed to find the answer to the
problem in a time bounded by a polynomial function of the
protein size.
Present ab initio prediction algorithms use virtually

every kind of advanced algorithm that has been used in
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Figure 2 Schematic view of ab initio prediction methods (revised from
Lin, 1996).
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solving combinatorial problems, such as molecular dy-
namics (Duan and Kollman, 1998), Monte Carlo
(Simons et al., 1999; Ortiz et al., 1999), genetic algorithms
(Pederson and Moult, 1997), simulated annealing
and graph theory methods. The molecular dynamics
algorithm simulates themovement of the atoms of proteins
and solvents based on classical Newtonian laws, and thus
has a strong physics background. However, most of the
latest ab initio prediction algorithms tend to use Monte
Carlo algorithms or genetic algorithms because the most
effective potential functions nowadays for ab initio
prediction are knowledge-based threading functions,
which in most cases are discrete and unable to calculate
molecular forces for molecular dynamics simulations.
Some workers have also tried to combine the molecular
dynamics method with the Monte Carlo method in one
algorithm, as well as combining different potentials
(Zhang, 1999).
Fragment-assembling algorithms increase the confor-

mational search efficiency by enumerating the limited
number of possible structures for any given protein
fragment. The possible candidate structures are selected
on the basis of statistical analysis of the current protein
structure database. Using these algorithms, it is not
necessary to spend a great deal of time exploring the
conformational space of every fragment; instead, whole
protein conformations can be obtained by assembling the
limited number of fragment conformations.As a result, the
program can be fast enough to search the conformational
space of small to medium-sized proteins currently using
Monte Carlo or genetic algorithms. In addition to the
speed advantage, the fragment-assembling algorithms can
guarantee to give reasonable local structures, at least for
the fragment structures selected.
In thehistoryof protein structure prediction, the authors

of ab initio algorithms have tended to overestimate the
performance of their algorithms because of the lack of
objective assessment methods. Starting from 1994, John
Moult and his co-workers organized a series of conferences
named CASP (Critical Assessment of techniques for
protein Structure Prediction). The procedure of CASP is
to first collect a number of protein targets whose structures
are soon to be solved by X-ray crystallography, those
targets are posted on the Internet, inviting predictors
around the world to submit their predictions before the
experimental structures become public. After the experi-
mental structures are solved, the committee of CASP uses
objective criteria such as the root mean square deviation
between the predicted structure and the real structure to
evaluate the success of all predictions.
The CASP3 results showed that several ab initio

prediction groups have produced reasonably accurate
models of protein fragments of up to 60 residues or so
(Orengo et al., 1999; Simons et al., 1999; Ortiz et al., 1999),
especially the fragment assembling algorithm (Simons
et al., 1999).

Discussion

From the review in the previous sections, it can be seen that
the comparative modelling method has become a very
mature approach for protein structure prediction, while
more recent advances in threading methods effectively
extend the structure prediction scale to remote homo-
logues. Finally, cutting-edge developments in software and
hardware have brought ab initio algorithms very close to
real application.
One of the latest developments related to protein

structure prediction is the emergence of the structural
genomics project in the post-human genomics era. After
Celera Genomics and the public effort headed by NIH
dramatically finished the human genome project (HGP)
ahead of the expected timetable, scientists around the
world started to collaborate on the structural genomics
project (Sanchez et al., 2000). The idea is to classify all the
proteins in the genome into homologous families and then
to pick a representative sequence for each family to make
experimental structures. Subsequently, the structures of all
the sequences in the genome can be modelled using plain
comparativemodellingmethods. In other words, all future
protein structure prediction work would be comparative
modelling. On the other hand, other structure prediction
methods still can be useful in the future; for example, ab
initio algorithms can still be used to study the theoretical
basis of the protein folding problem.
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